线程安全集合类可以分为三大类:
Hashtable
—线程安全的map实现 , Vector
—线程安全的list实现性能低,不建议使用
Collections
装饰的线程安全集合,如:性能也不高,底层都是通过加同步锁实现的
重点介绍 java.util.concurrent.*
下的线程安全集合类,可以发现它们有规律,里面包含三类关键词:Blocking、CopyOnWrite、Concurrent
Blocking
大部分实现基于锁,并提供用来阻塞的方法—基于ReentrantLock实现CopyOnWrite
之类容器修改开销相对较重Concurrent
类型的容器练习:单词计数
生成测试数据
package com;
import lombok.extern.slf4j.Slf4j;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.Collectors;
/** * @author 大忽悠 * @create 2022/1/8 15:20 */
@Slf4j
public class Main {
static final String ALPHA = "abcedfghijklmnopqrstuvwxyz";
public static void main(String[] args)
{
int length = ALPHA.length();
int count = 200;
List<String> list = new ArrayList<>(length * count);
//循环26次
for (int i = 0; i < length; i++) {
char ch = ALPHA.charAt(i);
//每个字母添加两百次
for (int j = 0; j < count; j++) {
list.add(String.valueOf(ch));
}
}
//对当前集合进行洗牌操作
Collections.shuffle(list);
//循环26次
for (int i = 0; i < 26; i++) {
//try...withResource写法
try (PrintWriter out = new PrintWriter(
new OutputStreamWriter(
new FileOutputStream("tmp/" + (i + 1) + ".txt"))))
{
String collect = list.subList(i * count, (i + 1) * count).stream()
//收集起来---通过\n换行,完成集合中每个元素的拼接,最后返回一个字符串
.collect(Collectors.joining("\n"));
//将上面拼接的字符串,输出到指定文件中
out.print(collect);
} catch (IOException e) {
}
}
}
}
模版代码,模版代码中封装了多线程读取文件的代码
package com;
import lombok.extern.slf4j.Slf4j;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.function.BiConsumer;
import java.util.function.Supplier;
/** * @author 大忽悠 * @create 2022/1/8 15:20 */
@Slf4j
public class Main {
private static <V> void demo(Supplier<Map<String, V>> supplier,
BiConsumer<Map<String, V>, List<String>> consumer)
{
Map<String, V> counterMap = supplier.get();
List<Thread> ts = new ArrayList<>();
//准备26个线程
for (int i = 1; i <= 26; i++) {
int idx = i;
Thread thread = new Thread(() -> {
//从文件中读取字符放入list集合中,然后返回
List<String> words = readFromFile(idx);
//进行消费
consumer.accept(counterMap, words);
});
ts.add(thread);
}
//启动26个线程
ts.forEach(t -> t.start());
//等待26个线程都执行完毕
ts.forEach(t -> {
try {
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
});
//打印map集合中的数据
System.out.println(counterMap);
}
//从文件中进行读取
public static List<String> readFromFile(int i) {
ArrayList<String> words = new ArrayList<>();
try (BufferedReader in = new BufferedReader(new InputStreamReader(new FileInputStream("tmp/"
+ i + ".txt"))))
{
while (true) {
//每次读取一行数据,加入集合中,一行一个单词
String word = in.readLine();
if (word == null) {
break;
}
words.add(word);
}
return words;
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
你要做的是实现两个参数
正确结果输出应该是每个单词出现 200 次
{a=200, b=200, c=200, d=200, e=200, f=200, g=200, h=200, i=200, j=200, k=200, l=200, m=200,
n=200, o=200, p=200, q=200, r=200, s=200, t=200, u=200, v=200, w=200, x=200, y=200, z=200}
下面的实现为:
public static void main(String[] args) {
demo(
// 创建 map 集合
// 创建 ConcurrentHashMap 对不对?
() -> new HashMap<String, Integer>(),
// 进行计数
(map, words) -> {
for (String word : words) {
Integer counter = map.get(word);
int newValue = counter == null ? 1 : counter + 1;
map.put(word, newValue);
}
}
);
}
有没有问题?请改进
{a=194, b=196, c=197, d=194, e=196, f=195, g=197, h=197, i=191, j=192, k=195, l=196, m=196, n=197, o=193, p=194, q=195, r=196, s=193, t=193, u=197, v=196, w=197, x=195, y=195, z=191}
参考解答1
public static void main(String[] args) {
demo(
() -> new ConcurrentHashMap<String, LongAdder>(),
(map, words) -> {
for (String word : words) {
// 注意不能使用 putIfAbsent,此方法返回的是上一次的 value,首次调用返回 null
map.computeIfAbsent(word, (key) -> new LongAdder()).increment();
}
}
);
}
输出
{a=200, b=200, c=200, d=200, e=200, f=200, g=200, h=200, i=200, j=200, k=200, l=200, m=200, n=200, o=200, p=200, q=200, r=200, s=200, t=200, u=200, v=200, w=200, x=200, y=200, z=200}
参考解答2
public static void main(String[] args) {
demo(
() -> new ConcurrentHashMap<String, Integer>(),
(map, words) -> {
for (String word : words) {
// 函数式编程,无需原子变量
map.merge(word, 1, Integer::sum);
}
}
);
}
输出
{a=200, b=200, c=200, d=200, e=200, f=200, g=200, h=200, i=200, j=200, k=200, l=200, m=200, n=200, o=200, p=200, q=200, r=200, s=200, t=200, u=200, v=200, w=200, x=200, y=200, z=200}
JDK7 HashMap的实现是数组加链表的方式来实现的
并发死链的现象只有在JDK7的环境下才会复现
package com;
import lombok.extern.slf4j.Slf4j;
import java.util.HashMap;
/** * @author 大忽悠 * @create 2022/1/8 15:20 */
@Slf4j
public class Main {
public static void main(String[] args) {
// 测试 java 7 中哪些数字的 hash 结果相等
System.out.println("长度为16时,桶下标为1的key");
for (int i = 0; i < 64; i++) {
if (hash(i) % 16 == 1) {
System.out.println(i);
}
}
System.out.println("长度为32时,桶下标为1的key");
for (int i = 0; i < 64; i++) {
if (hash(i) % 32 == 1) {
System.out.println(i);
}
}
// 1, 35, 16, 50 当大小为16时,它们在一个桶内
final HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
// 放 12 个元素
map.put(2, null);
map.put(3, null);
map.put(4, null);
map.put(5, null);
map.put(6, null);
map.put(7, null);
map.put(8, null);
map.put(9, null);
map.put(10, null);
map.put(16, null);
map.put(35, null);
map.put(1, null);
System.out.println("扩容前大小[main]:" + map.size());
new Thread() {
@Override
public void run() {
// 放第 13 个元素, 发生扩容
map.put(50, null);
System.out.println("扩容后大小[Thread-0]:" + map.size());
}
}.start();
new Thread() {
@Override
public void run() {
// 放第 13 个元素, 发生扩容
map.put(50, null);
System.out.println("扩容后大小[Thread-1]:" + map.size());
}
}.start();
}
final static int hash(Object k) {
int h = 0;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
}
调试工具使用 idea
在 HashMap 源码 590 行加断点(JDK7)
int newCapacity = newTable.length;
断点的条件
如下,目的是让 HashMap 在扩容为 32 时,并且线程为 Thread-0 或 Thread-1 时停下来
newTable.length==32 &&
(
Thread.currentThread().getName().equals("Thread-0")||
Thread.currentThread().getName().equals("Thread-1")
)
断点暂停方式选择 Thread,否则在调试 Thread-0 时,Thread-1 无法恢复运行
运行代码,程序在预料的断点位置停了下来,输出
长度为16时,桶下标为1的key
1
16
35
50
长度为32时,桶下标为1的key
1
35
扩容前大小[main]:12
接下来进入扩容流程调试
在 HashMap 源码 594 行加断点
Entry<K,V> next = e.next; // 593
if (rehash) // 594
// ...
这是为了观察 e 节点和 next 节点的状态,Thread-0 单步执行到 594 行,再 594 处再添加一个断点(条件Thread.currentThread().getName().equals(“Thread-0”))
这时可以在 Variables
面板观察到 e 和 next 变量,使用 view as -> Object
查看节点状态
e (1)->(35)->(16)->null
next (35)->(16)->null
在 Threads 面板选中 Thread-1 恢复运行,可以看到控制台输出新的内容如下,Thread-1 扩容已完成
newTable[1] (35)->(1)->null
扩容后大小:13
这时 Thread-0 还停在 594 处, Variables 面板变量的状态已经变化为
e (1)->null
next (35)->(1)->null
为什么呢,因为 Thread-1 扩容时链表也是后加入的元素放入链表头,因此链表就倒过来了,但 Thread-1 虽然结果正确,但它结束后 Thread-0 还要继续运行
接下来就可以单步调试(F8)观察死链的产生了
下一轮循环到 594,将 e 搬迁到 newTable 链表头
newTable[1] (1)->null
e (35)->(1)->null
next (1)->null
下一轮循环到 594,将 e 搬迁到 newTable 链表头
newTable[1] (35)->(1)->null
e (1)->null
next null
再看看源码
e.next = newTable[1];
// 这时 e (1,35)
// 而 newTable[1] (35,1)->(1,35) 因为是同一个对象
newTable[1] = e;
// 再尝试将 e 作为链表头, 死链已成
e = next;
// 虽然 next 是 null, 会进入下一个链表的复制, 但死链已经形成了
HashMap 的并发死链发生在扩容时
// 将 table 迁移至 newTable
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
// 1 处
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
// 2 处
// 将新元素加入 newTable[i], 原 newTable[i] 作为新元素的 next
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
假设 map 中初始元素是
原始链表,格式:[下标] (key,next) [1] (1,35)->(35,16)->(16,null)
线程 a 执行到 1 处 ,此时局部变量 e 为 (1,35),而局部变量 next 为 (35,16) 线程 a 挂起
线程 b 开始执行
第一次循环
[1] (1,null)
第二次循环
[1] (35,1)->(1,null)
第三次循环
[1] (35,1)->(1,null) [17] (16,null)
切换回线程 a,此时局部变量 e 和 next 被恢复,引用没变但内容变了:e 的内容被改为 (1,null),而 next 的内
容被改为 (35,1) 并链向 (1,null)
第一次循环
[1] (1,null)
第二次循环,注意这时 e 是 (35,1) 并链向 (1,null) 所以 next 又是 (1,null) [1] (35,1)->(1,null)
第三次循环,e 是 (1,null),而 next 是 null,但 e 被放入链表头,这样 e.next 变成了 35 (2 处)
[1] (1,35)->(35,1)->(1,35)
已经是死链了
重要属性和内部类
// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K, V> implements Map.Entry<K, V> {
}
// hash 表
transient volatile Node<K, V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K, V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
static final class ForwardingNode<K, V> extends Node<K, V> {
}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K, V> extends Node<K, V> {
}
// 作为 treebin 的头节点, 存储 root 和 first
static final class TreeBin<K, V> extends Node<K, V> {
}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K, V> extends Node<K, V> {
}
TreeBin是红黑树的头结点和TreeNode是红黑树里面的节点
当链表长度超过指定值后,会先尝试扩容数组,如果扩容后的数组长度没有超过64就进行扩容,否则转换为红黑树结构。
当节点被删除,链表长度小于指定长度后,还会将红黑树转换回链表结构
// 获取 Node[] 中第 i 个 Node
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)
// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)
// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)
可以看到实现了懒惰初始化,在构造方法中仅仅计算了 table 的大小,以后在第一次使用时才会真正创建
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long) (1.0 + (long) initialCapacity / loadFactor);
// tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ...
int cap = (size >= (long) MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int) size);
this.sizeCtl = cap;
}
设置的初始大小和创建出来的hashtable的大小,不一定相等
public V get(Object key) {
Node<K, V>[] tab;
Node<K, V> e, p;
int n, eh;
K ek;
// spread 方法能确保返回结果是正数
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 如果头结点已经是要查找的 key
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// hash 为负数表示该 bin 在扩容中或是 treebin, 这时调用 find 方法来查找
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 正常遍历链表, 用 equals 比较
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
以下数组简称(table),链表简称(bin)
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// 其中 spread 方法会综合高位低位, 具有更好的 hash 性
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K, V>[] tab = table; ; ) {
// f 是链表头节点
// fh 是链表头结点的 hash
// i 是链表在 table 中的下标
Node<K, V> f;
int n, i, fh;
// 要创建 table
if (tab == null || (n = tab.length) == 0)
// 初始化 table 使用了 cas, 无需 synchronized 创建成功, 进入下一轮循环
tab = initTable();
// 要创建链表头节点
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 添加链表头使用了 cas, 无需 synchronized
if (casTabAt(tab, i, null,
new Node<K, V>(hash, key, value, null)))
break;
}
// 帮忙扩容
else if ((fh = f.hash) == MOVED)
// 帮忙之后, 进入下一轮循环
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 锁住链表头节点
synchronized (f) {
// 再次确认链表头节点没有被移动
if (tabAt(tab, i) == f) {
// 链表
if (fh >= 0) {
binCount = 1;
// 遍历链表
for (Node<K, V> e = f; ; ++binCount) {
K ek;
// 找到相同的 key
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
// 更新
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K, V> pred = e;
// 已经是最后的节点了, 新增 Node, 追加至链表尾
if ((e = e.next) == null) {
pred.next = new Node<K, V>(hash, key,
value, null);
break;
}
}
}
// 红黑树
else if (f instanceof TreeBin) {
Node<K, V> p;
binCount = 2;
// putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNode
if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
// 释放链表头节点的锁
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
// 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 增加 size 计数
addCount(1L, binCount);
return null;
}
private final Node<K, V>[] initTable() {
Node<K, V>[] tab;
int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield();
// 尝试将 sizeCtl 设置为 -1(表示初始化 table)
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 获得锁, 创建 table, 这时其它线程会在 while() 循环中 yield 直至 table 创建
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
// check 是之前 binCount 的个数
//参数一是计数1
//参数二是链表长度
private final void addCount(long x, int check) {
//累加单元数组,方便多线程进行累加操作
CounterCell[] as;
long b, s;
if (
// 已经有了 counterCells, 向 cell 累加,说明出现了竞争
(as = counterCells) != null ||
// 还没有, 向 baseCount 累加,还没有竞争
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
) {
CounterCell a;
long v;
int m;
boolean uncontended = true;
if (
// 还没有 counterCells
as == null || (m = as.length - 1) < 0 ||
// 还没有 cell
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
// cell cas 增加计数失败
!(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
) {
// 创建累加单元数组和cell, 累加重试
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
// 获取元素个数
s = sumCount();
}
//如果链表长度大于1,需要判断当前链表需要进行扩容吗
if (check >= 0) {
Node<K, V>[] tab, nt;
int n, sc;
while (s >= (long) (sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// newtable 已经创建了,帮忙扩容
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 需要扩容,这时 newtable 未创建
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null);
s = sumCount();
}
}
}
size 计算实际发生在 put,remove 改变集合元素的操作之中
没有竞争发生,向 baseCount 累加计数
有竞争发生,新建 counterCells,向其中的一个 cell 累加计数
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long) Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int) n);
}
final long sumCount() {
CounterCell[] as = counterCells;
CounterCell a;
// 将 baseCount 计数与所有 cell 计数累加
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
Java 8 数组(Node) +( 链表 Node | 红黑树 TreeNode ) 以下数组简称(table),链表简称(bin)
它维护了一个 segment 数组,每个 segment 对应一把锁
构造器分析
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// ssize 必须是 2^n, 即 2, 4, 8, 16 ... 表示了 segments 数组的大小
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
// segmentShift 默认是 32 - 4 = 28
this.segmentShift = 32 - sshift;
// segmentMask 默认是 15 即 0000 0000 0000 1111
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// 创建 segments and segments[0]
Segment<K, V> s0 =
new Segment<K, V>(loadFactor, (int) (cap * loadFactor),
(HashEntry<K, V>[]) new HashEntry[cap]);
Segment<K, V>[] ss = (Segment<K, V>[]) new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}
构造完成,如下图所示
可以看到 ConcurrentHashMap 没有实现懒惰初始化,空间占用不友好
其中 this.segmentShift 和 this.segmentMask 的作用是通过位运算决定将 key 的 hash 结果匹配到哪个 segment
例如,根据某一 hash 值求 segment 位置,先将高位向低位移动 this.segmentShift 位
结果再与 this.segmentMask 做位于运算,最终得到 1010 即下标为 10 的 segment
public V put(K key, V value) {
Segment<K, V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
// 计算出 segment 下标
int j = (hash >>> segmentShift) & segmentMask;
// 获得 segment 对象, 判断是否为 null, 是则创建该 segment
if ((s = (Segment<K, V>) UNSAFE.getObject
(segments, (j << SSHIFT) + SBASE)) == null) {
// 这时不能确定是否真的为 null, 因为其它线程也发现该 segment 为 null,
// 因此在 ensureSegment 里用 cas 方式保证该 segment 安全性
s = ensureSegment(j);
}
// 进入 segment 的put 流程
return s.put(key, hash, value, false);
}
segment 继承了可重入锁(ReentrantLock),它的 put 方法为
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
// 尝试加锁
HashEntry<K, V> node = tryLock() ? null :
// 如果不成功, 进入 scanAndLockForPut 流程
// 如果是多核 cpu 最多 tryLock 64 次, 进入 lock 流程
// 在尝试期间, 还可以顺便看该节点在链表中有没有, 如果没有顺便创建出来
scanAndLockForPut(key, hash, value);
// 执行到这里 segment 已经被成功加锁, 可以安全执行
V oldValue;
try {
HashEntry<K, V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K, V> first = entryAt(tab, index);
for (HashEntry<K, V> e = first; ; ) {
if (e != null) {
// 更新
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
} else {
// 新增
// 1) 之前等待锁时, node 已经被创建, next 指向链表头
if (node != null)
node.setNext(first);
else
// 2) 创建新 node
node = new HashEntry<K, V>(hash, key, value, first);
int c = count + 1;
// 3) 扩容
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
// 将 node 作为链表头
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
发生在 put 中,因为此时已经获得了锁,因此 rehash 时不需要考虑线程安全
private void rehash(HashEntry<K, V> node) {
HashEntry<K, V>[] oldTable = table;
int oldCapacity = oldTable.length;
int newCapacity = oldCapacity << 1;
threshold = (int) (newCapacity * loadFactor);
HashEntry<K, V>[] newTable =
(HashEntry<K, V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity; i++) {
HashEntry<K, V> e = oldTable[i];
if (e != null) {
HashEntry<K, V> next = e.next;
int idx = e.hash & sizeMask;
if (next == null) // Single node on list
newTable[idx] = e;
else { // Reuse consecutive sequence at same slot
HashEntry<K, V> lastRun = e;
int lastIdx = idx;
// 过一遍链表, 尽可能把 rehash 后 idx 不变的节点重用,尽可能一次性多移动一些节点到新的数组中
for (HashEntry<K, V> last = next;
last != null;
last = last.next) {
int k = last.hash & sizeMask;
if (k != lastIdx) {
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// 剩余节点需要新建
for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K, V> n = newTable[k];
newTable[k] = new HashEntry<K, V>(h, p.key, v, n);
}
}
}
}
// 扩容完成, 才加入新的节点
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
// 替换为新的 HashEntry table
table = newTable;
}
附,调试代码
public static void main(String[] args) {
ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<>();
for (int i = 0; i < 1000; i++) {
int hash = hash(i);
int segmentIndex = (hash >>> 28) & 15;
if (segmentIndex == 4 && hash % 8 == 2) {
System.out.println(i + "\t" + segmentIndex + "\t" + hash % 2 + "\t" + hash % 4 +
"\t" + hash % 8);
}
}
map.put(1, "value");
map.put(15, "value"); // 2 扩容为 4 15 的 hash%8 与其他不同
map.put(169, "value");
map.put(197, "value"); // 4 扩容为 8
map.put(341, "value");
map.put(484, "value");
map.put(545, "value"); // 8 扩容为 16
map.put(912, "value");
map.put(941, "value");
System.out.println("ok");
}
private static int hash(Object k) {
int h = 0;
if ((0 != h) && (k instanceof String)) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
// Spread bits to regularize both segment and index locations,
// using variant of single-word Wang/Jenkins hash.
h += (h << 15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h << 3);
h ^= (h >>> 6);
h += (h << 2) + (h << 14);
int v = h ^ (h >>> 16);
return v;
}
get 时并未加锁,用了 UNSAFE 方法保证了可见性,扩容过程中,get 先发生就从旧表取内容,get 后发生就从新表取内容
public V get(Object key) {
Segment<K, V> s; // manually integrate access methods to reduce overhead
HashEntry<K, V>[] tab;
int h = hash(key);
// u 为 segment 对象在数组中的偏移量
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
// s 即为 segment
if ((s = (Segment<K, V>) UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K, V> e = (HashEntry<K, V>) UNSAFE.getObjectVolatile
(tab, ((long) (((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K, V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (; ; ) {
if (retries++ == RETRIES_BEFORE_LOCK) {
// 超过重试次数, 需要创建所有 segment 并加锁
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K, V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
//这里判断是否被其他线程打扰,主要是在一开始没加锁的两次过程中进行判断
//加锁后,就肯定是一致的了
if (sum == last)
break;
last = sum;
}
} finally {
//如果超过重试次数,说明加过锁了,需要进行解锁
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}
public class LinkedBlockingQueue<E> extends AbstractQueue<E>
implements BlockingQueue<E>, java.io.Serializable {
static class Node<E> {
E item;
/** * 下列三种情况之一 * - 真正的后继节点 * - 自己, 发生在出队时 * - null, 表示是没有后继节点, 是最后了 */
Node<E> next;
Node(E x) {
item = x;
}
}
}
初始化链表 last = head = new Node(null); Dummy 节点用来占位,item 为 null
当一个节点入队 last = last.next = node;
再来一个节点入队 last = last.next = node;
出队
Node<E> h = head;
Node<E> first = h.next; h.next = h; // help GC
head = first; E x = first.item;
first.item = null;
return x;
first = h.next
h.next = h
head = first
E x = first.item;
first.item = null;
return x;
高明之处在于用了两把锁和 dummy 节点
线程安全分析
// 用于 put(阻塞) offer(非阻塞)
private final ReentrantLock putLock = new ReentrantLock();
// 用户 take(阻塞) poll(非阻塞)
private final ReentrantLock takeLock = new ReentrantLock();
put 操作
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
int c = -1;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this.putLock;
// count 用来维护元素计数
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
// 满了等待
while (count.get() == capacity) {
// 倒过来读就好: 等待 notFull
notFull.await();
}
// 有空位, 入队且计数加一
enqueue(node);
c = count.getAndIncrement();
// 除了自己 put 以外, 队列还有空位, 由自己叫醒其他 put 线程
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
// 如果队列中有一个元素, 叫醒 take 线程
if (c == 0)
// 这里调用的是 notEmpty.signal() 而不是 notEmpty.signalAll() 是为了减少竞争
signalNotEmpty();
}
take 操作
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
// 如果队列中只有一个空位时, 叫醒 put 线程
// 如果有多个线程进行出队, 第一个线程满足 c == capacity, 但后续线程 c < capacity
if (c == capacity)
// 这里调用的是 notFull.signal() 而不是 notFull.signalAll() 是为了减少竞争
signalNotFull()
return x;
}
由 put 唤醒 put 是为了避免信号不足
主要列举 LinkedBlockingQueue 与 ArrayBlockingQueue 的性能比较
ConcurrentLinkedQueue 的设计与 LinkedBlockingQueue 非常像,也是两把【锁】,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行dummy 节点的引入让两把【锁】将来锁住的是不同对象,避免竞争
只是这【锁】使用了 cas 来实现
事实上,ConcurrentLinkedQueue 应用还是非常广泛的
例如之前讲的 Tomcat 的 Connector 结构时,Acceptor 作为生产者向 Poller 消费者传递事件信息时,正是采用了
ConcurrentLinkedQueue 将 SocketChannel 给 Poller 使用
初始代码
public class Test3 {
public static void main(String[] args) {
MyQueue<String> queue = new MyQueue<>();
queue.offer("1");
queue.offer("2");
queue.offer("3");
System.out.println(queue);
}
}
package com;
class MyQueue<E> implements Queue<E> {
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (Node<E> p = head; p != null; p = p.next.get()) {
E item = p.item;
if (item != null) {
sb.append(item).append("->");
}
}
sb.append("null");
return sb.toString();
}
@Override
public int size() {
return 0;
}
@Override
public boolean isEmpty() {
return false;
}
@Override
public boolean contains(Object o) {
return false;
}
@Override
public Iterator<E> iterator() {
return null;
}
@Override
public Object[] toArray() {
return new Object[0];
}
@Override
public <T> T[] toArray(T[] a) {
return null;
}
@Override
public boolean add(E e) {
return false;
}
@Override
public boolean remove(Object o) {
return false;
}
@Override
public boolean containsAll(Collection<?> c) {
return false;
}
@Override
public boolean addAll(Collection<? extends E> c) {
return false;
}
@Override
public boolean removeAll(Collection<?> c) {
return false;
}
@Override
public boolean retainAll(Collection<?> c) {
return false;
}
@Override
public void clear() {
}
@Override
public E remove() {
return null;
}
@Override
public E element() {
return null;
}
@Override
public E peek() {
return null;
}
public MyQueue() {
head = last = new Node<>(null, null);
}
private volatile Node<E> last;
private volatile Node<E> head;
private E dequeue() { /*Node<E> h = head; Node<E> first = h.next; h.next = h; head = first; E x = first.item; first.item = null; return x;*/
return null;
}
@Override
public E poll() {
return null;
}
@Override
public boolean offer(E e) {
return true;
}
static class Node<E> {
volatile E item;
public Node(E item, Node<E> next) {
this.item = item;
this.next = new AtomicReference<>(next);
}
AtomicReference<Node<E>> next;
}
}
offer
public boolean offer(E e) {
Node<E> n = new Node<>(e, null);
while (true) {
// 获取尾节点
AtomicReference<Node<E>> next = last.next;
// S1: 真正尾节点的 next 是 null, cas 从 null 到新节点
if (next.compareAndSet(null, n)) {
// 这时的 last 已经是倒数第二, next 不为空了, 其它线程的 cas 肯定失败
// S2: 更新 last 为倒数第一的节点
last = n;
return true;
}
}
}
CopyOnWriteArraySet 是它的马甲 底层实现采用了 写入时拷贝 的思想,增删改操作会将底层数组拷贝一份,更改操作在新数组上执行,这时不影响其它线程的并发读,读写分离。 以新增为例:
public boolean add(E e) {
synchronized (lock) {
// 获取旧的数组
Object[] es = getArray();
int len = es.length;
// 拷贝新的数组(这里是比较耗时的操作,但不影响其它读线程)
es = Arrays.copyOf(es, len + 1);
// 添加新元素
es[len] = e;
// 替换旧的数组
setArray(es);
return true;
}
}
这里的源码版本是 Java 11,在 Java 1.8 中使用的是可重入锁而不是 synchronized
其它读操作并未加锁,例如:
public void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
for (Object x : getArray()) {
@SuppressWarnings("unchecked") E e = (E) x;
action.accept(e);
}
}
适合『读多写少』的应用场景
Thread-1已经将新数组替换了原数组,Thread-0拿到的依然是旧数组的引用,这里体现出来的就是弱一致性
不容易测试,但问题确实存在
CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() ->
{
list.remove(0);
System.out.println(list);
}).start();
sleep1s();
while(iter.hasNext())
{
System.out.println(iter.next());
}
输出
[2, 3]
1
2
3
不要觉得弱一致性就不好
版权说明 : 本文为转载文章, 版权归原作者所有 版权申明
原文链接 : https://cjdhy.blog.csdn.net/article/details/122392728
内容来源于网络,如有侵权,请联系作者删除!