Java-红黑树

x33g5p2x  于2022-02-07 转载在 Java  
字(12.5k)|赞(0)|评价(0)|浏览(397)

学习注意事项

  1. 必须会二叉搜索树
  2. 必须会AVL树
  3. 必须知道什么是L , R ,RL , LR 这些旋转概念

以上概念,我博客里都有自行寻找…下面就开始红黑树的讲解了

介绍

红黑树必须满足的5个条件

和AVL树的比较
AVL树是一棵严格的平衡树,它所有的子树都满足二叉平衡树的定义。因此AVL树被严格控制在(-1 ,1,+1),因此AVL树的查找比较高效。但AVL树插入、删除结点后旋转的次数比红黑树多。红黑树用非严格的平衡来降低插入删除时旋转的次数。因此,如果你的业务中查找远远多于插入、删除,那选AVL树; 如果查找、插入、删除频率差不多,那么选择红黑树。

插入过程

默认插入的结点为红色。为何?
因为红黑树中黑节点至少是红节点的两倍,因此插入节点的父节点为黑色的概率较大,而此时并不需要作任何调整,因此效率较高。

1. 父为黑

插入后无需任何操作。由于黑节点个数至少为红节点的两倍,因此父为黑的情况较多,而这种情况在插入后无需任何调整,这就是红黑树比AVL树插入效率高的原因!

2. 父为红

父为红的情况破坏了红黑树的性质,此时需要根据叔叔的颜色来做不同的处理。

2.1叔叔为红

此时很简单,只需交换爸爸、叔叔和爷爷的颜色即可。
此时若爷爷节点和太爷爷节点颜色相同,再以爷爷节点为起始节点,进行刚才相同的操作,即:根据爷爷的兄弟颜色做相应的操作。

2.2叔叔为黑

此时较为复杂,分如下四种情况:

2.2.1爸爸在左、叔叔在右、我在左

以爸爸为根节点,进行一次R旋转。

2.2.2爸爸在左、叔叔在右、我在右

先以为根节点,进行一次L旋转
再以为根节点,进行一次R旋转

2.2.3叔叔在左、爸爸在右、我在左

先以为根节点,进行一次R旋转;
再以为根节点,进行一次L旋转。

2.2.4叔叔在左、爸爸在右、我在右

以爸爸为根节点,进行一次L旋转。

删除过程

  1. 实际删除节点要么是叶子节点,要么有且仅有一个左孩子;
  2. 若为叶子节点,必为红色;
  3. 若实际删除节点还有孩子,则该必为左孩子;
    a)若左孩子为红色,则实际删除节点必为黑色;
    b)若左孩子为黑色,则实际删除节点红黑均可以。

约定

  1. 蓝色箭头:表示判定点
  2. 在删除操作开始前,蓝色箭头首先指向实际删除节点。
  3. 『实际删除节点』在图中以『』表示。

1. 父为红色(待删节点为红)

直接删除父节点即可:

2. 父为黑子为红(待删节点为黑)

待删节点子节点为红+左孩子,用子节点覆盖父节点,并保持父节点的颜色:

3. 父为黑子为黑(待删节点和子节点均为黑)

那么就需要根据叔叔的颜色进行不同逻辑的删除

3.1. 叔叔为红

注意: 叔叔为红,则爷爷必为黑!

3.1.1 父在左 叔在右
  1. 子节点覆盖父节点
  2. 进行一次左旋

3.1.2 父在右 叔在左
  1. 子节点覆盖父节点
  2. 进行一次右旋

3.2. 叔叔为黑

注意; 叔叔、爸爸都为黑,那爷爷颜色就不确定了!

3.2.1 祖父红两个侄子黑

以下两种情况操作一致:
5. 子覆盖父(删除)
6. 交换祖父和叔叔的颜色。

3.2.1.1父在左叔在右

3.2.1.2父在右叔在左

3.2.2祖父黑两个侄子黑

以下两种情况操作一致:

  1. 祖父染成子节点的颜色;
  2. 子节点染成黑色;
  3. 叔叔染成红色
3.2.2.1 父在左叔在右

3.2.2.2父在右叔在左

3.2.3祖父颜色随意至少有一个红侄
3.2.3.1红侄为左左(叔左、红侄左)
  1. 红侄进行一次右旋
  2. 红侄染成黑色
  3. 交换叔叔和祖父的颜色

3.2.3.2红侄为左右(叔左、红侄右)
  1. 红侄进行一次右旋+左旋
  2. 红侄染成父节点颜色;
  3. 父节点染成黑色

3.2.3.3 红侄为右左(叔右、红侄左)
  1. 红侄进行一次右旋+左旋
  2. 红侄染成父节点颜色;
  3. 父节点染成黑色;

3.2.3.4 红侄为右右(叔右、红侄右)
  1. 红侄进行一次左旋
  2. 叔叔染成父节点颜色;
  3. 红侄染成黑色;

红黑树动态可视化网站

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

红黑树参考代码

package com.tree.rbtree;

/**
 * Java 语言: 红黑树
 *
 * @author skywang
 * @date 2013/11/07
 */

public class RBTree<T extends Comparable<T>> {

    private RBTNode<T> mRoot;    // 根结点

    private static final boolean RED   = false;
    private static final boolean BLACK = true;

    public class RBTNode<T extends Comparable<T>> {
        boolean color;        // 颜色
        T key;                // 关键字(键值)
        RBTNode<T> left;    // 左孩子
        RBTNode<T> right;    // 右孩子
        RBTNode<T> parent;    // 父结点

        public RBTNode(T key, boolean color, RBTNode<T> parent, RBTNode<T> left, RBTNode<T> right) {
            this.key = key;
            this.color = color;
            this.parent = parent;
            this.left = left;
            this.right = right;
        }

        public T getKey() {
            return key;
        }

        @Override
        public String toString() {
            return ""+key+(this.color==RED?"(R)":"B");
        }
    }

    public RBTree() {
        mRoot=null;
    }

    private RBTNode<T> parentOf(RBTNode<T> node) {
        return node!=null ? node.parent : null;
    }
    private boolean colorOf(RBTNode<T> node) {
        return node!=null ? node.color : BLACK;
    }
    private boolean isRed(RBTNode<T> node) {
        return ((node!=null)&&(node.color==RED)) ? true : false;
    }
    private boolean isBlack(RBTNode<T> node) {
        return !isRed(node);
    }
    private void setBlack(RBTNode<T> node) {
        if (node!=null) {
            node.color = BLACK;
        }
    }
    private void setRed(RBTNode<T> node) {
        if (node!=null) {
            node.color = RED;
        }
    }
    private void setParent(RBTNode<T> node, RBTNode<T> parent) {
        if (node!=null) {
            node.parent = parent;
        }
    }
    private void setColor(RBTNode<T> node, boolean color) {
        if (node!=null) {
            node.color = color;
        }
    }

    /*
     * 前序遍历"红黑树"
     */
    private void preOrder(RBTNode<T> tree) {
        if(tree != null) {
            System.out.print(tree.key+" ");
            preOrder(tree.left);
            preOrder(tree.right);
        }
    }

    public void preOrder() {
        preOrder(mRoot);
    }

    /*
     * 中序遍历"红黑树"
     */
    private void inOrder(RBTNode<T> tree) {
        if(tree != null) {
            inOrder(tree.left);
            System.out.print(tree.key+" ");
            inOrder(tree.right);
        }
    }

    public void inOrder() {
        inOrder(mRoot);
    }

    /*
     * 后序遍历"红黑树"
     */
    private void postOrder(RBTNode<T> tree) {
        if(tree != null)
        {
            postOrder(tree.left);
            postOrder(tree.right);
            System.out.print(tree.key+" ");
        }
    }

    public void postOrder() {
        postOrder(mRoot);
    }

    /*
     * (递归实现)查找"红黑树x"中键值为key的节点
     */
    private RBTNode<T> search(RBTNode<T> x, T key) {
        if (x==null) {
            return x;
        }

        int cmp = key.compareTo(x.key);
        if (cmp < 0) {
            return search(x.left, key);
        } else if (cmp > 0) {
            return search(x.right, key);
        } else {
            return x;
        }
    }

    public RBTNode<T> search(T key) {
        return search(mRoot, key);
    }

    /*
     * (非递归实现)查找"红黑树x"中键值为key的节点
     */
    private RBTNode<T> iterativeSearch(RBTNode<T> x, T key) {
        while (x!=null) {
            int cmp = key.compareTo(x.key);

            if (cmp < 0) {
                x = x.left;
            } else if (cmp > 0) {
                x = x.right;
            } else {
                return x;
            }
        }

        return x;
    }

    public RBTNode<T> iterativeSearch(T key) {
        return iterativeSearch(mRoot, key);
    }

    /*
     * 查找最小结点:返回tree为根结点的红黑树的最小结点。
     */
    private RBTNode<T> minimum(RBTNode<T> tree) {
        if (tree == null) {
            return null;
        }

        while(tree.left != null) {
            tree = tree.left;
        }
        return tree;
    }

    public T minimum() {
        RBTNode<T> p = minimum(mRoot);
        if (p != null) {
            return p.key;
        }

        return null;
    }

    /*
     * 查找最大结点:返回tree为根结点的红黑树的最大结点。
     */
    private RBTNode<T> maximum(RBTNode<T> tree) {
        if (tree == null) {
            return null;
        }

        while(tree.right != null) {
            tree = tree.right;
        }
        return tree;
    }

    public T maximum() {
        RBTNode<T> p = maximum(mRoot);
        if (p != null) {
            return p.key;
        }

        return null;
    }

    /*
     * 找结点(x)的后继结点。即,查找"红黑树中数据值大于该结点"的"最小结点"。
     */
    public RBTNode<T> successor(RBTNode<T> x) {
        // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
        if (x.right != null) {
            return minimum(x.right);
        }

        // 如果x没有右孩子。则x有以下两种可能:
        // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
        // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
        RBTNode<T> y = x.parent;
        while ((y!=null) && (x==y.right)) {
            x = y;
            y = y.parent;
        }

        return y;
    }

    /*
     * 找结点(x)的前驱结点。即,查找"红黑树中数据值小于该结点"的"最大结点"。
     */
    public RBTNode<T> predecessor(RBTNode<T> x) {
        // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
        if (x.left != null) {
            return maximum(x.left);
        }

        // 如果x没有左孩子。则x有以下两种可能:
        // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
        // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
        RBTNode<T> y = x.parent;
        while ((y!=null) && (x==y.left)) {
            x = y;
            y = y.parent;
        }

        return y;
    }

    /*
     * 对红黑树的节点(x)进行左旋转
     *
     * 左旋示意图(对节点x进行左旋):
     *      px                              px
     *     /                               /
     *    x                               y
     *   /  \      --(左旋)-.           / \                #
     *  lx   y                          x  ry
     *     /   \                       /  \
     *    ly   ry                     lx  ly
     *
     *
     */
    private void leftRotate(RBTNode<T> x) {
        // 设置x的右孩子为y
        RBTNode<T> y = x.right;

        // 将 “y的左孩子” 设为 “x的右孩子”;
        // 如果y的左孩子非空,将 “x” 设为 “y的左孩子的父亲”
        x.right = y.left;
        if (y.left != null) {
            y.left.parent = x;
        }

        // 将 “x的父亲” 设为 “y的父亲”
        y.parent = x.parent;

        if (x.parent == null) {
            this.mRoot = y;            // 如果 “x的父亲” 是空节点,则将y设为根节点
        } else {
            if (x.parent.left == x) {
                x.parent.left = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
            } else {
                x.parent.right = y;    // 如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
            }
        }

        // 将 “x” 设为 “y的左孩子”
        y.left = x;
        // 将 “x的父节点” 设为 “y”
        x.parent = y;
    }

    /*
     * 对红黑树的节点(y)进行右旋转
     *
     * 右旋示意图(对节点y进行左旋):
     *            py                               py
     *           /                                /
     *          y                                x
     *         /  \      --(右旋)-.            /  \                     #
     *        x   ry                           lx   y
     *       / \                                   / \                   #
     *      lx  rx                                rx  ry
     *
     */
    private void rightRotate(RBTNode<T> y) {
        // 设置x是当前节点的左孩子。
        RBTNode<T> x = y.left;

        // 将 “x的右孩子” 设为 “y的左孩子”;
        // 如果"x的右孩子"不为空的话,将 “y” 设为 “x的右孩子的父亲”
        y.left = x.right;
        if (x.right != null) {
            x.right.parent = y;
        }

        // 将 “y的父亲” 设为 “x的父亲”
        x.parent = y.parent;

        if (y.parent == null) {
            this.mRoot = x;            // 如果 “y的父亲” 是空节点,则将x设为根节点
        } else {
            if (y == y.parent.right) {
                y.parent.right = x;    // 如果 y是它父节点的右孩子,则将x设为“y的父节点的右孩子”
            } else {
                y.parent.left = x;    // (y是它父节点的左孩子) 将x设为“x的父节点的左孩子”
            }
        }

        // 将 “y” 设为 “x的右孩子”
        x.right = y;

        // 将 “y的父节点” 设为 “x”
        y.parent = x;
    }

    /*
     * 红黑树插入修正函数
     *
     * 在向红黑树中插入节点之后(失去平衡),再调用该函数;
     * 目的是将它重新塑造成一颗红黑树。
     *
     * 参数说明:
     *     node 插入的结点        // 对应《算法导论》中的z
     */
    private void insertFixUp(RBTNode<T> node) {
        RBTNode<T> parent, gparent;

        // 若“父节点存在,并且父节点的颜色是红色”
        while (((parent = parentOf(node))!=null) && isRed(parent)) {
            gparent = parentOf(parent);

            //若“父节点”是“祖父节点的左孩子”
            if (parent == gparent.left) {
                // Case 1条件:叔叔节点是红色
                RBTNode<T> uncle = gparent.right;
                if ((uncle!=null) && isRed(uncle)) {
                    setBlack(uncle);
                    setBlack(parent);
                    setRed(gparent);
                    node = gparent;
                    continue;
                }

                // Case 2条件:叔叔是黑色,且当前节点是右孩子
                if (parent.right == node) {
                    RBTNode<T> tmp;
                    leftRotate(parent);
                    tmp = parent;
                    parent = node;
                    node = tmp;
                }

                // Case 3条件:叔叔是黑色,且当前节点是左孩子。
                setBlack(parent);
                setRed(gparent);
                rightRotate(gparent);
            } else {    //若“z的父节点”是“z的祖父节点的右孩子”
                // Case 1条件:叔叔节点是红色
                RBTNode<T> uncle = gparent.left;
                if ((uncle!=null) && isRed(uncle)) {
                    setBlack(uncle);
                    setBlack(parent);
                    setRed(gparent);
                    node = gparent;
                    continue;
                }

                // Case 2条件:叔叔是黑色,且当前节点是左孩子
                if (parent.left == node) {
                    RBTNode<T> tmp;
                    rightRotate(parent);
                    tmp = parent;
                    parent = node;
                    node = tmp;
                }

                // Case 3条件:叔叔是黑色,且当前节点是右孩子。
                setBlack(parent);
                setRed(gparent);
                leftRotate(gparent);
            }
        }

        // 将根节点设为黑色
        setBlack(this.mRoot);
    }

    /*
     * 将结点插入到红黑树中
     *
     * 参数说明:
     *     node 插入的结点        // 对应《算法导论》中的node
     */
    private void insert(RBTNode<T> node) {
        int cmp;
        RBTNode<T> y = null;
        RBTNode<T> x = this.mRoot;

        // 1. 将红黑树当作一颗二叉查找树,将节点添加到二叉查找树中。
        while (x != null) {
            y = x;
            cmp = node.key.compareTo(x.key);
            if (cmp < 0) {
                x = x.left;
            } else {
                x = x.right;
            }
        }

        node.parent = y;
        if (y!=null) {
            cmp = node.key.compareTo(y.key);
            if (cmp < 0) {
                y.left = node;
            } else {
                y.right = node;
            }
        } else {
            this.mRoot = node;
        }

        // 2. 设置节点的颜色为红色
        node.color = RED;

        // 3. 将它重新修正为一颗二叉查找树
        insertFixUp(node);
    }

    /*
     * 新建结点(key),并将其插入到红黑树中
     *
     * 参数说明:
     *     key 插入结点的键值
     */
    public void insert(T key) {
        RBTNode<T> node=new RBTNode<T>(key,BLACK,null,null,null);

        // 如果新建结点失败,则返回。
        if (node != null) {
            insert(node);
        }
    }

    /*
     * 红黑树删除修正函数
     *
     * 在从红黑树中删除插入节点之后(红黑树失去平衡),再调用该函数;
     * 目的是将它重新塑造成一颗红黑树。
     *
     * 参数说明:
     *     node 待修正的节点
     */
    private void removeFixUp(RBTNode<T> node, RBTNode<T> parent) {
        RBTNode<T> other;

        while ((node==null || isBlack(node)) && (node != this.mRoot)) {
            if (parent.left == node) {
                other = parent.right;
                if (isRed(other)) {
                    // Case 1: x的兄弟w是红色的
                    setBlack(other);
                    setRed(parent);
                    leftRotate(parent);
                    other = parent.right;
                }

                if ((other.left==null || isBlack(other.left)) &&
                        (other.right==null || isBlack(other.right))) {
                    // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
                    setRed(other);
                    node = parent;
                    parent = parentOf(node);
                } else {

                    if (other.right==null || isBlack(other.right)) {
                        // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
                        setBlack(other.left);
                        setRed(other);
                        rightRotate(other);
                        other = parent.right;
                    }
                    // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                    setColor(other, colorOf(parent));
                    setBlack(parent);
                    setBlack(other.right);
                    leftRotate(parent);
                    node = this.mRoot;
                    break;
                }
            } else {

                other = parent.left;
                if (isRed(other)) {
                    // Case 1: x的兄弟w是红色的
                    setBlack(other);
                    setRed(parent);
                    rightRotate(parent);
                    other = parent.left;
                }

                if ((other.left==null || isBlack(other.left)) &&
                        (other.right==null || isBlack(other.right))) {
                    // Case 2: x的兄弟w是黑色,且w的俩个孩子也都是黑色的
                    setRed(other);
                    node = parent;
                    parent = parentOf(node);
                } else {

                    if (other.left==null || isBlack(other.left)) {
                        // Case 3: x的兄弟w是黑色的,并且w的左孩子是红色,右孩子为黑色。
                        setBlack(other.right);
                        setRed(other);
                        leftRotate(other);
                        other = parent.left;
                    }

                    // Case 4: x的兄弟w是黑色的;并且w的右孩子是红色的,左孩子任意颜色。
                    setColor(other, colorOf(parent));
                    setBlack(parent);
                    setBlack(other.left);
                    rightRotate(parent);
                    node = this.mRoot;
                    break;
                }
            }
        }

        if (node!=null) {
            setBlack(node);
        }
    }

    /*
     * 删除结点(node),并返回被删除的结点
     *
     * 参数说明:
     *     node 删除的结点
     */
    private void 
    remove(RBTNode<T> node) {
        RBTNode<T> child, parent;
        boolean color;

        // 被删除节点的"左右孩子都不为空"的情况。
        if ( (node.left!=null) && (node.right!=null) ) {
            // 被删节点的后继节点。(称为"取代节点")
            // 用它来取代"被删节点"的位置,然后再将"被删节点"去掉。
            RBTNode<T> replace = node;

            // 获取后继节点
            replace = replace.right;
            while (replace.left != null) {
                replace = replace.left;
            }

            // "node节点"不是根节点(只有根节点不存在父节点)
            if (parentOf(node)!=null) {
                if (parentOf(node).left == node) {
                    parentOf(node).left = replace;
                } else {
                    parentOf(node).right = replace;
                }
            } else {
                // "node节点"是根节点,更新根节点。
                this.mRoot = replace;
            }

            // child是"取代节点"的右孩子,也是需要"调整的节点"。
            // "取代节点"肯定不存在左孩子!因为它是一个后继节点。
            child = replace.right;
            parent = parentOf(replace);
            // 保存"取代节点"的颜色
            color = colorOf(replace);

            // "被删除节点"是"它的后继节点的父节点"
            if (parent == node) {
                parent = replace;
            } else {
                // child不为空
                if (child!=null) {
                    setParent(child, parent);
                }
                parent.left = child;

                replace.right = node.right;
                setParent(node.right, replace);
            }

            replace.parent = node.parent;
            replace.color = node.color;
            replace.left = node.left;
            node.left.parent = replace;

            if (color == BLACK) {
                removeFixUp(child, parent);
            }

            node = null;
            return ;
        }

        if (node.left !=null) {
            child = node.left;
        } else {
            child = node.right;
        }

        parent = node.parent;
        // 保存"取代节点"的颜色
        color = node.color;

        if (child!=null) {
            child.parent = parent;
        }

        // "node节点"不是根节点
        if (parent!=null) {
            if (parent.left == node) {
                parent.left = child;
            } else {
                parent.right = child;
            }
        } else {
            this.mRoot = child;
        }

        if (color == BLACK) {
            removeFixUp(child, parent);
        }
        node = null;
    }

    /*
     * 删除结点(z),并返回被删除的结点
     *
     * 参数说明:
     *     tree 红黑树的根结点
     *     z 删除的结点
     */
    public void remove(T key) {
        RBTNode<T> node;

        if ((node = search(mRoot, key)) != null) {
            remove(node);
        }
    }

    /*
     * 销毁红黑树
     */
    private void destroy(RBTNode<T> tree) {
        if (tree==null) {
            return ;
        }

        if (tree.left != null) {
            destroy(tree.left);
        }
        if (tree.right != null) {
            destroy(tree.right);
        }

        tree=null;
    }

    public void clear() {
        destroy(mRoot);
        mRoot = null;
    }

    /*
     * 打印"红黑树"
     *
     * key        -- 节点的键值
     * direction  --  0,表示该节点是根节点;
     *               -1,表示该节点是它的父结点的左孩子;
     *                1,表示该节点是它的父结点的右孩子。
     */
    private void print(RBTNode<T> tree, T key, int direction) {

        if(tree != null) {

            if(direction==0)    // tree是根节点
            {
                System.out.printf("%2d(B) is root\n", tree.key);
            } else                // tree是分支节点
            {
                System.out.printf("%2d(%s) is %2d's %6s child\n", tree.key, isRed(tree)?"R":"B", key, direction==1?"right" : "left");
            }

            print(tree.left, tree.key, -1);
            print(tree.right,tree.key,  1);
        }
    }

    public void print() {
        if (mRoot != null) {
            print(mRoot, mRoot.key, 0);
        }
    }
}

点赞 -收藏-关注-便于以后复习和收到最新内容有其他问题在评论区讨论-或者私信我-收到会在第一时间回复如有侵权,请私信联系我感谢,配合,希望我的努力对你有帮助^_^

相关文章

最新文章

更多