LeetCode_动态规划_中等_931.下降路径最小和

x33g5p2x  于2022-03-12 转载在 其他  
字(1.0k)|赞(0)|评价(0)|浏览(270)

1.题目

给你一个 n x n 的方形整数数组 matrix ,请你找出并返回通过 matrix 的下降路径的最小和

下降路径可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

示例 1:
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

提示:
n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-falling-path-sum

2.思路

(1)动态规划

3.代码实现(Java)

//思路1————动态规划
public int minFallingPathSum(int[][] matrix) {
    int n = matrix.length;
    //res保存下降路径最小和,初始值为Integer.MAX_VALUE
    int res = Integer.MAX_VALUE;
    //dp[i]:存储每一层对应元素的最小值
    int[] dp = new int[n + 2];
    //初始化dp
    dp[0] = dp[n + 1] = Integer.MAX_VALUE;
    for (int j = 1; j <= n; j++) {
        dp[j] = matrix[0][j - 1];
    }

    //处理每一行
    for (int i = 1; i < n; i++) {
        int temp = 0, last = Integer.MAX_VALUE;
        //处理每一列
        for (int j = 1; j <= n; j++) {
            temp = dp[j];
            dp[j] = Math.min(Math.min(last, dp[j]), dp[j + 1]) + matrix[i][j - 1];
            last = temp;
        }
    }

    for (int i = 1; i <= n; i++) {
        res = Math.min(res, dp[i]);
    }
    return res;
}

相关文章