【Love2d从青铜到王者】第十五篇:Love2d之角度和距离(Angles and distance)

x33g5p2x  于2022-05-11 转载在 其他  
字(8.8k)|赞(0)|评价(0)|浏览(394)

系列文章目录

前言

🍇一、角度(Angle)

  • 让我们画一个沿鼠标光标方向移动的圆。
  • 从创建一个圆开始。
function love.load()

    ---创建一个名为circle的对象
    circle={
        x=100,
        y=100,
        radius=25,
        speed=200,
    }
    
    --[[
    --给它属性x,y,半径和速度
    circle.x=100
    circle.y=100
    circle.radius=25
    circle.speed=200
    --]]
end

function love.update(dt)
end

function love.draw()
    --画圆
    love.graphics.circle("line",circle.x,circle.y,circle.radius)
end

  • 注意:刚开始运行 这个love2d程序时出现了以下错误,以后请注意:

  • 错误原因是你命名文件夹时候命名的名字有空格,所以出现以上错误,所以命名文件时文件名字不要有空格。

  • 要将圆移向光标,我们需要知道角度。我们可以用函数得到角度math.atan2。第一个参数是你要去的y位置,减去你的对象的y位置。第二个参数是相同的,但对于x位置。这是y在x之前出现的罕见情况之一。
  • 基本上,atan2所做的是获取一个垂直和水平向量(距离+方向),并根据该信息返回一个角度。

function love.load()

    ---创建一个名为circle的对象
    circle={
        x=100,
        y=100,
        radius=25,
        speed=200,
    }
    
    --[[
    --给它属性x,y,半径和速度
    circle.x=100
    circle.y=100
    circle.radius=25
    circle.speed=200
    --]]
end

function love.update(dt)
    --love.mouse.getPosition返回光标的x和y位置
    mouse_x,mouse_y=love.mouse.getPosition()
    angle=math.atan2(mouse_y-circle.y,mouse_x-circle.x)
end

function love.draw()
    --画圆
    love.graphics.circle("line",circle.x,circle.y,circle.radius)

    love.graphics.setFont(love.graphics.newFont(30))
    --打印角度
    love.graphics.print("angle:"..angle,10,10)

    --Here are some lines to visualize the velocities这里有一些线来显示速度
    love.graphics.line(circle.x, circle.y, mouse_x, circle.y)
    love.graphics.line(circle.x, circle.y, circle.x, mouse_y)
    
    --The angle角度
    love.graphics.line(circle.x, circle.y, mouse_x, mouse_y)
end

  • 如果atan2让你困惑,不要担心。你只需要知道:**math.atan2(target_y - object_y, target_x - object_x)**给你一个角度。在我们的例子中,对象是圆,目标是我们的光标。
  • 这里就要变得数学化了,但不要让它吓到你。这并不困难,如果你不明白,对初学者来说完全没问题。
  • 当你运行这个游戏时,你可能会注意到这个角度不会高于3.14 (Pi,π)。这是因为atan2不返回以度为单位的角度,而是返回以弧度为单位的角度。
  • 这是解释弧度的gif。

  • 如果你仍然困惑,我建议你观看B站视频关于弧度。
    一些要点:
    math.atan2返回以弧度表示的角度。
    返回的角度在-3.14到3.14之间。
    360度等于π*2弧度。所以90度等于π/2弧度。
  • 数字π,有时写为圆周率,是圆的周长与直径的比值。也就是说,如果我们用一个圆的直径,除以这个圆的周长,我们得到圆周率。

  • 在Lua中,我们可以通过使用math.pi
  • 如果你不明白,现在没关系。如果第一次没有得到什么,也不要气馁。

🍊二、正弦和余弦(Sine and cosine)

  • 现在我们需要让我们的圆圈向鼠标移动。为此,我们将使用math. cosmath. sin
  • 基于我们传递的角度,这两个函数都将返回一个介于-1和1之间的数字。
  • 这里有一个gif,可以帮助可视化正弦和余弦。

  • 这里有一张图片显示了gif中到底发生了什么。

  • 正弦和余弦是基于角度的介于-1和1之间的数字。
  • 如果角度指向左边,那么余弦值为-1,正弦值为0。

  • 如果角度指向下,那么余弦值为0,正弦值为1。

  • 那么如何利用这些值让我们的圈子向鼠标移动呢?通过将我们的速度与它们相乘。例如,如果鼠标处于对角线角度,比如说右上,正弦大约是-0.7,余弦是0.7。
  • 如果我们这样做:
function love.load()

    ---创建一个名为circle的对象
    circle={
        x=100,
        y=100,
        radius=25,
        speed=200,
    }
    
    --[[
    --给它属性x,y,半径和速度
    circle.x=100
    circle.y=100
    circle.radius=25
    circle.speed=200
    --]]
end

function love.update(dt)
    --love.mouse.getPosition返回光标的x和y位置
    mouse_x,mouse_y=love.mouse.getPosition()
    angle=math.atan2(mouse_y-circle.y,mouse_x-circle.x)

    sin=math.sin(angle)
    cos=math.sin(angle)

    --让圆圈向鼠标移动
    circle.x=circle.x+circle.speed*dt
    circle.y=circle.y+circle.speed*dt
end

function love.draw()
    --画圆
    love.graphics.circle("line",circle.x,circle.y,circle.radius)

    love.graphics.setFont(love.graphics.newFont(30))
    --打印角度
    love.graphics.print("angle:"..angle,10,10)

    --Here are some lines to visualize the velocities这里有一些线来显示速度
    love.graphics.line(circle.x, circle.y, mouse_x, circle.y)
    love.graphics.line(circle.x, circle.y, circle.x, mouse_y)
    
    --The angle角度
    love.graphics.line(circle.x, circle.y, mouse_x, mouse_y)
end

  • 我们的圆圈会直接移到右下角。但是乘以正弦和余弦,就像这样:
function love.load()

    ---创建一个名为circle的对象
    circle={
        x=100,
        y=100,
        radius=25,
        speed=200,
    }
    
    --[[
    --给它属性x,y,半径和速度
    circle.x=100
    circle.y=100
    circle.radius=25
    circle.speed=200
    --]]
end

function love.update(dt)
    --love.mouse.getPosition返回光标的x和y位置
    mouse_x,mouse_y=love.mouse.getPosition()
    angle=math.atan2(mouse_y-circle.y,mouse_x-circle.x)

    sin=math.sin(angle)
    cos=math.sin(angle)

    --让圆圈向鼠标移动
    --circle.x=circle.x+circle.speed*dt
    --circle.y=circle.y+circle.speed*dt
    circle.x=circle.x+circle.speed*cos*dt
    circle.y=circle.y+circle.speed*sin*dt
end

function love.draw()
    --画圆
    love.graphics.circle("line",circle.x,circle.y,circle.radius)

    love.graphics.setFont(love.graphics.newFont(30))
    --打印角度
    love.graphics.print("angle:"..angle,10,10)

    --Here are some lines to visualize the velocities这里有一些线来显示速度
    love.graphics.line(circle.x, circle.y, mouse_x, circle.y)
    love.graphics.line(circle.x, circle.y, circle.x, mouse_y)
    
    --The angle角度
    love.graphics.line(circle.x, circle.y, mouse_x, mouse_y)
end

  • 那么我们的圆圈会水平移动circle.speed * 0.7
  • 并且会垂直移动circle.speed * - 0.7
  • 这意味着它应该直接向我们的鼠标移动。试试吧!

🍑三、距离(Distance)

  • 现在,假设我们只想移动光标附近的圆。为此,我们需要计算它们之间的距离。为此我们使用勾股定理。
  • 利用勾股定理,你可以计算出直角三角形中最长的直线。

  • 基本上你要做的是用短边的长度做两个正方形。然后你把这些方块加起来,形成一个大方块。最后你找到平方根,得到最长线的长度,也就是斜边。
  • 那么这如何帮助我们找到距离呢?当你有两个点,在我们的例子中是圆和光标,还有一个看不见的三角形。
  • 看看这个:
function love.load()

    ---创建一个名为circle的对象
    circle={
        x=100,
        y=100,
        radius=25,
        speed=200,
    }
    
    --[[
    --给它属性x,y,半径和速度
    circle.x=100
    circle.y=100
    circle.radius=25
    circle.speed=200
    --]]
end

function love.update(dt)
    --love.mouse.getPosition返回光标的x和y位置
    mouse_x,mouse_y=love.mouse.getPosition()
    angle=math.atan2(mouse_y-circle.y,mouse_x-circle.x)

    sin=math.sin(angle)
    cos=math.sin(angle)

    --让圆圈向鼠标移动
    --circle.x=circle.x+circle.speed*dt
    --circle.y=circle.y+circle.speed*dt
    --circle.x=circle.x+circle.speed*cos*dt
    --circle.y=circle.y+circle.speed*sin*dt
end

function love.draw()
    --画圆
    love.graphics.circle("line",circle.x,circle.y,circle.radius)

    love.graphics.setFont(love.graphics.newFont(30))
    --打印角度
    love.graphics.print("angle:"..angle,10,10)

    --[[
    --Here are some lines to visualize the velocities这里有一些线来显示速度
    love.graphics.line(circle.x, circle.y, mouse_x, circle.y)
    love.graphics.line(circle.x, circle.y, circle.x, mouse_y)
    
    --The angle角度
    love.graphics.line(circle.x, circle.y, mouse_x, mouse_y)
    --]]
    love.graphics.circle("line", circle.x, circle.y, circle.radius)
    love.graphics.line(circle.x, circle.y, mouse_x, mouse_y)
    love.graphics.line(circle.x, circle.y, mouse_x, circle.y)
    love.graphics.line(mouse_x, mouse_y, mouse_x, circle.y)
end

  • 如果我们在这个三角形上使用勾股定理,我们可以算出它的斜边,这样我们就知道两点之间的距离。
  • 让我们为此创建一个新函数。首先,我们需要横向**(horizontal_distance)和纵向(vertical_distance)**。
function getDistance(x1, y1, x2, y2)
    local horizontal_distance = x1 - x2
    local vertical_distance = y1 - y2
end
  • 接下来我们需要平方这些数字。我们可以通过乘以它本身或乘以2。
function getDistance(x1, y1, x2, y2)
    local horizontal_distance = x1 - x2
    local vertical_distance = y1 - y2

    --这两个都管用
    local a = horizontal_distance * horizontal_distance
    local b = vertical_distance ^2
end
  • 现在我们需要将这些数字相加,得到平方根。如果我们平方5,我们得到5*5,或者5^2,我们得到25,所以25的平方根是5。我们可以得到平方根math.sqrt
function getDistance(x1, y1, x2, y2)
    local horizontal_distance = x1 - x2
    local vertical_distance = y1 - y2

    --这两个都管用
    local a = horizontal_distance * horizontal_distance
    local b = vertical_distance ^2

    local c = a + b
    local distance = math.sqrt(c)
    return distance
end
  • 为了证明这是可行的,让我们以距离为半径画一个圆。

  • 有用!现在让我们来玩玩吧。我希望圆圈只在距离小于400像素时移动,距离越近移动越慢。
function love.load()

    ---创建一个名为circle的对象
    circle={
        x=100,
        y=100,
        radius=25,
        speed=200,
    }
    
    --[[
    --给它属性x,y,半径和速度
    circle.x=100
    circle.y=100
    circle.radius=25
    circle.speed=200
    --]]
end

function love.update(dt)
    --love.mouse.getPosition返回光标的x和y位置
    mouse_x,mouse_y=love.mouse.getPosition()
    angle=math.atan2(mouse_y-circle.y,mouse_x-circle.x)

    sin=math.sin(angle)
    cos=math.sin(angle)

    --让圆圈向鼠标移动
    --circle.x=circle.x+circle.speed*dt
    --circle.y=circle.y+circle.speed*dt
    
    --circle.x=circle.x+circle.speed*cos*dt
    --circle.y=circle.y+circle.speed*sin*dt

    local distance = getDistance(circle.x, circle.y, mouse_x, mouse_y)

    if distance < 400 then
        circle.x = circle.x + circle.speed * cos * (distance/100) * dt
        circle.y = circle.y + circle.speed * sin * (distance/100) * dt
    end
end

function getDistance(x1, y1, x2, y2)
    local horizontal_distance = x1 - x2
    local vertical_distance = y1 - y2

    --这两个都管用
    local a = horizontal_distance * horizontal_distance
    local b = vertical_distance ^2

    local c = a + b
    local distance = math.sqrt(c)
    return distance
end

function love.draw()
    --画圆
    love.graphics.circle("line",circle.x,circle.y,circle.radius)

    love.graphics.setFont(love.graphics.newFont(30))
    --打印角度
    love.graphics.print("angle:"..angle,10,10)

    --[[
    --Here are some lines to visualize the velocities这里有一些线来显示速度
    love.graphics.line(circle.x, circle.y, mouse_x, circle.y)
    love.graphics.line(circle.x, circle.y, circle.x, mouse_y)
    
    --The angle角度
    love.graphics.line(circle.x, circle.y, mouse_x, mouse_y)
    --]]
    love.graphics.line(circle.x, circle.y, mouse_x, mouse_y)
    love.graphics.line(circle.x, circle.y, mouse_x, circle.y)
    love.graphics.line(mouse_x, mouse_y, mouse_x, circle.y)

    local distance = getDistance(circle.x, circle.y, mouse_x, mouse_y)
    love.graphics.circle("line", circle.x, circle.y, distance)
end

🍈四、图像(Image)

  • 让我们使用一个图像,让它看着光标。

  • 默认情况下,rotation的选项参数为0。
  • 角度为0时,余弦为1,正弦为0,这意味着对象将向右移动。
  • 所以当你使用图像时,你应该让它默认向右看。
function love.load()
    arrow = {}
    arrow.x = 200
    arrow.y = 200
    arrow.speed = 300
    arrow.angle = 0
    arrow.image = love.graphics.newImage("arrow_right.png")
end

function love.update(dt)
    mouse_x, mouse_y = love.mouse.getPosition()
    arrow.angle = math.atan2(mouse_y - arrow.y, mouse_x - arrow.x)
    cos = math.cos(arrow.angle)
    sin = math.sin(arrow.angle)

    arrow.x = arrow.x + arrow.speed * cos * dt
    arrow.y = arrow.y + arrow.speed * sin * dt
end

function love.draw()
    love.graphics.draw(arrow.image, arrow.x, arrow.y, arrow.angle)
    love.graphics.circle("fill", mouse_x, mouse_y, 5)
end

  • 当你运行游戏时,你可能会注意到箭头有点偏。

  • 这是因为图像是绕着它的左上角旋转的,而不是它的中心。为了解决这个问题,我们需要把原点放在图像的中心。
  • 现在它正确地指向我们的光标:

🍌五、总结

  • 我们可以通过求出角度的余弦和正弦来使物体以一定角度运动。接下来,我们用速度乘以余弦的x移动,用速度乘以正弦的y移动。我们可以利用勾股定理计算两点之间的距离。使用图像时,你应该让它默认指向右边。别忘了把它的原点放在中间。

🍋总结

以上就是今天要讲的内容,本文仅仅简单介绍了Love2d之角度和距离(Angles and distance),与博主的lua语言文章结合更好的理解love2d的编码,如果你是一名独立游戏开发者,或者一位对游戏开发有着深厚兴趣,但是又对于unity3d,ue4等这些对于新手而言不太友好的引擎而头疼的开发者;那么现在,你可以试试Love2D。Love2D是一款基于Lua编写的轻量级游戏框架,尽管官方称呼其为引擎,但实际上它只能称得上是一个框架,因为他并没有一套全面完整的解决方案。不过,这款框架上手及其容易,是学习游戏开发的初学者入门的一个良好选择。

相关文章