Dijkstra 算法实现

x33g5p2x  于2022-07-10 转载在 其他  
字(3.3k)|赞(0)|评价(0)|浏览(430)

一 问题描述

小明为位置1,求他到其他各顶点的距离。

二 实现

  1. package graph.dijkstra;
  2. import java.util.Scanner;
  3. import java.util.Stack;
  4. public class Dijkstra {
  5. static final int MaxVnum = 100; // 顶点数最大值
  6. static final int INF = 0x3f3f3f3f; //无穷大
  7. static final int dist[] = new int[MaxVnum]; // 最短距离
  8. static final int p[] = new int[MaxVnum]; // 前驱数组
  9. static final boolean flag[] = new boolean[MaxVnum]; // 如果 s[i] 等于 true,说明顶点 i 已经加入到集合 S ;否则顶点 i 属于集合 V-S
  10. static int locatevex(AMGraph G, char x) {
  11. for (int i = 0; i < G.vexnum; i++) // 查找顶点信息的下标
  12. if (x == G.Vex[i])
  13. return i;
  14. return -1; // 没找到
  15. }
  16. static void CreateAMGraph(AMGraph G) {
  17. Scanner scanner = new Scanner(System.in);
  18. int i, j;
  19. char u, v;
  20. int w;
  21. System.out.println("请输入顶点数:");
  22. G.vexnum = scanner.nextInt();
  23. System.out.println("请输入边数:");
  24. G.edgenum = scanner.nextInt();
  25. System.out.println("请输入顶点信息:");
  26. // 输入顶点信息,存入顶点信息数组
  27. for (int k = 0; k < G.vexnum; k++) {
  28. G.Vex[k] = scanner.next().charAt(0);
  29. }
  30. //初始化邻接矩阵所有值为0,如果是网,则初始化邻接矩阵为无穷大
  31. for (int m = 0; m < G.vexnum; m++)
  32. for (int n = 0; n < G.vexnum; n++)
  33. G.Edge[m][n] = INF;
  34. System.out.println("请输入每条边依附的两个顶点及权值:");
  35. while (G.edgenum-- > 0) {
  36. u = scanner.next().charAt(0);
  37. v = scanner.next().charAt(0);
  38. w = scanner.nextInt();
  39. i = locatevex(G, u);// 查找顶点 u 的存储下标
  40. j = locatevex(G, v);// 查找顶点 v 的存储下标
  41. if (i != -1 && j != -1)
  42. G.Edge[i][j] = w; //有向图邻接矩阵
  43. else {
  44. System.out.println("输入顶点信息错!请重新输入!");
  45. G.edgenum++; // 本次输入不算
  46. }
  47. }
  48. }
  49. static void print(AMGraph G) { // 输出邻接矩阵
  50. System.out.println("图的邻接矩阵为:");
  51. for (int i = 0; i < G.vexnum; i++) {
  52. for (int j = 0; j < G.vexnum; j++)
  53. System.out.print(G.Edge[i][j] + "\t");
  54. System.out.println();
  55. }
  56. }
  57. public static void main(String[] args) {
  58. AMGraph G = new AMGraph();
  59. int st;
  60. char u;
  61. CreateAMGraph(G);
  62. System.out.println("请输入源点的信息:");
  63. Scanner scanner = new Scanner(System.in);
  64. u = scanner.next().charAt(0);
  65. ;
  66. st = locatevex(G, u);//查找源点u的存储下标
  67. Dijkstra(G, st);
  68. System.out.println("小明所在的位置:" + u);
  69. for (int i = 0; i < G.vexnum; i++) {
  70. System.out.print("小明:" + u + " - " + "要去的位置:" + G.Vex[i]);
  71. if (dist[i] == INF)
  72. System.out.print(" sorry,无路可达");
  73. else
  74. System.out.println(" 最短距离为:" + dist[i]);
  75. }
  76. findpath(G, u);
  77. }
  78. public static void Dijkstra(AMGraph G, int u) {
  79. for (int i = 0; i < G.vexnum; i++) {
  80. dist[i] = G.Edge[u][i]; //初始化源点u到其他各个顶点的最短路径长度
  81. flag[i] = false;
  82. if (dist[i] == INF)
  83. p[i] = -1; //源点u到该顶点的路径长度为无穷大,说明顶点i与源点u不相邻
  84. else
  85. p[i] = u; //说明顶点i与源点u相邻,设置顶点i的前驱p[i]=u
  86. }
  87. dist[u] = 0;
  88. flag[u] = true; //初始时,集合S中只有一个元素:源点u
  89. for (int i = 0; i < G.vexnum; i++) {
  90. int temp = INF, t = u;
  91. for (int j = 0; j < G.vexnum; j++) //在集合V-S中寻找距离源点u最近的顶点t
  92. if (!flag[j] && dist[j] < temp) {
  93. t = j;
  94. temp = dist[j];
  95. }
  96. if (t == u) return; //找不到t,跳出循环
  97. flag[t] = true; //否则,将t加入集合
  98. for (int j = 0; j < G.vexnum; j++)//更新V-S中与t相邻接的顶点到源点u的距离
  99. if (!flag[j] && G.Edge[t][j] < INF)
  100. if (dist[j] > (dist[t] + G.Edge[t][j])) {
  101. dist[j] = dist[t] + G.Edge[t][j];
  102. p[j] = t;
  103. }
  104. }
  105. }
  106. public static void findpath(AMGraph G, char u) {
  107. int x;
  108. Stack<Integer> S = new Stack<>();
  109. System.out.println("源点为:" + u);
  110. for (int i = 0; i < G.vexnum; i++) {
  111. x = p[i];
  112. if (x == -1 && u != G.Vex[i]) {
  113. System.out.println("源点到其它各顶点最短路径为:" + u + "--" + G.Vex[i] + " sorry,无路可达");
  114. continue;
  115. }
  116. while (x != -1) {
  117. S.push(x);
  118. x = p[x];
  119. }
  120. System.out.println("源点到其它各顶点最短路径为:");
  121. while (!S.empty()) {
  122. System.out.print(G.Vex[S.peek()] + "--");
  123. S.pop();
  124. }
  125. System.out.println(G.Vex[i] + " 最短距离为:" + dist[i]);
  126. }
  127. }
  128. }
  129. class AMGraph {
  130. char Vex[] = new char[Dijkstra.MaxVnum];
  131. int Edge[][] = new int[Dijkstra.MaxVnum][Dijkstra.MaxVnum];
  132. int vexnum; // 顶点数
  133. int edgenum; // 边数
  134. }

三 测试

相关文章