黑盒子问题

x33g5p2x  于2022-08-17 转载在 其他  
字(3.4k)|赞(0)|评价(0)|浏览(301)

一 问题描述

二 分析

可以建立一棵平衡二叉树,查找第 k 小。

三 代码

package com.platform.modules.alg.alglib.poj1442;

public class Poj1442 {
    public String cal(String input) {
        String output = "";
        AVLTree avlTree = new AVLTree();

        String[] split = input.split("\n");
        String[] line = split[0].split(" ");
        int n = Integer.parseInt(line[0]);
        int m = Integer.parseInt(line[1]);

        int num[] = new int[200010];
        line = split[1].split(" ");
        for (int i = 0; i < n; i++) {
            num[i + 1] = Integer.parseInt(line[i]);
        }

        int num1[] = new int[200010];
        line = split[2].split(" ");
        for (int i = 0; i < m; i++) {
            num1[i + 1] = Integer.parseInt(line[i]);
        }

        int t = 1;
        int k = 1;
        while (t <= m) {
            while (k <= num1[t]) {
                avlTree.add(new Node(num[k++]));
            }
            int ans = avlTree.getRoot().findkth(avlTree.getRoot(), t++);
            output += ans;
            output += "\n";
        }
        return output;
    }

    class AVLTree {
        // 根节点
        private Node root;

        public Node getRoot() {
            return root;
        }

        /**
         * 功能描述:添加结点
         *
         * @param node 节点
         * @author cakin
         * @date 2021/3/22
         */
        public void add(Node node) {
            if (root == null) {
                node.num = 1;
                node.size = 1;
                node.height = 1;
                root = node; // 如果 root 为空则直接让root指向node
            } else {
                root.size++;
                root.add(node);
            }
        }
    }

    /**
     * @className: Node
     * @description: 节点
     * @date: 2021/3/22
     * @author: cakin
     */
    class Node {
        // 节点值
        int value;
        // 大小
        int size;
        int num;
        int height;
        // 左子树根节点
        Node left;
        // 右子树根节点
        Node right;

        public Node(int value) {
            this.value = value;
        }

        /**
         * 功能描述:返回左子树的高度
         *
         * @author cakin
         * @date 2021/3/27
         */
        public int leftHeight() {
            if (left == null) {
                return 0;
            }
            return left.height();
        }

        /**
         * 功能描述:返回右子树的高度
         *
         * @author cakin
         * @date 2021/3/27
         */
        public int rightHeight() {
            if (right == null) {
                return 0;
            }
            return right.height();
        }

        /**
         * 功能描述:返回以该结点为根结点的树的高度
         *
         * @author cakin
         * @date 2021/3/27
         */
        public int height() {
            return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
        }

        int findkth(Node T, int k) { // 找第 k 小
            int t;
            if (T == null)
                return 0;
            if (T.left != null)
                t = T.left.size;
            else
                t = 0;
            if (k < t + 1)
                return findkth(T.left, k);
            else if (k > t + T.num)
                return findkth(T.right, k - (t + T.num));
            else return T.value;
        }

        /**
         * 功能描述:左旋转方法
         *
         * @author cakin
         * @date 2021/3/27
         */
        private void leftRotate() {
            // 创建新的结点,值为当前根结点的值
            Node newNode = new Node(value);
            // 把新的结点的左子树设置成当前结点的左子树
            newNode.left = left;
            // 把新节点的右子树设置为当前节点右子树的左子树
            newNode.right = right.left;
            // 把当前节点的值设置为右子节点的值
            value = right.value;
            // 把当前节点的右子树设置为右子树的右子树
            right = right.right;
            // 把当前节点的左子树设置为新节点
            left = newNode;
        }

        /**
         * 功能描述:右旋转
         *
         * @author cakin
         * @date 2021/3/27
         */
        private void rightRotate() {
            Node newNode = new Node(value);
            newNode.right = right;
            newNode.left = left.right;
            value = left.value;
            left = left.left;
            right = newNode;
        }

        /**
         * 功能描述:添加节点到平衡二叉树
         *
         * @param node 节点
         * @author cakin
         * @date 2021/3/22
         */
        public void add(Node node) {
            if (node == null) {
                return;
            }

            // 传入的结点的值小于当前子树的根结点的值
            if (node.value < this.value) {
                // 当前结点左子树根结点为null
                if (this.left == null) {
                    node.num = 1;
                    node.size = 1;
                    node.height = 1;
                    this.left = node;
                } else {
                    this.left.size++;
                    // 递归的向左子树添加
                    this.left.add(node);
                }
            } else if (node.value > this.value) { // 传入的结点的值大于当前子树的根结点的值
                if (this.right == null) {
                    node.num = 1;
                    node.size = 1;
                    node.height = 1;
                    this.right = node;
                } else {
                    // 递归的向右子树添加
                    this.right.size++;
                    this.right.add(node);
                }
            } else {
                this.num++;
                this.size++;
                return;
            }

            // 当添加完一个结点后,如果(右子树的高度-左子树的高度) > 1 , 进行左旋转
            if (rightHeight() - leftHeight() > 1) {
                // 左旋转
                // leftRotate();
                // 如果它的右子树的左子树的高度大于它的右子树的右子树的高度
                if (right != null && right.leftHeight() > right.rightHeight()) {
                    // 先对右子结点进行右旋转
                    right.rightRotate();
                    // 然后再对当前结点进行左旋转
                    leftRotate();
                } else {
                    // 直接进行左旋转
                    leftRotate();
                }
                return;
            }

            // 当添加完一个结点后,如果(左子树的高度 - 右子树的高度) > 1, 进行左旋转
            if (leftHeight() - rightHeight() > 1) {
                // rightRotate();
                // 如果它的左子树的右子树高度大于它的左子树的高度
                if (left != null && left.rightHeight() > left.leftHeight()) {
                    // 先对当前结点的左子结点进行左旋转
                    left.leftRotate();
                    // 再对当前结点进行右旋转
                    rightRotate();
                } else {
                    // 直接进行右旋转
                    rightRotate();
                }
            }
        }
    }
}

四 测试

相关文章