很多人都说人生就是一个循环,每天重复重复。
而所谓环,对于写代码的小伙伴来说是有特殊定义的。我的理解就是节点循环,就成了环。
刚好刷到一个掘金好友分享的腾讯一面算法题:判断一个单链表是不是一个环。
其实有很多办法来实现,但是我更喜欢用快慢指针来判断环的形成。思路如下:
所谓环,那么就一定会快慢指针一定会相遇。
那么用golang实现一下:
package main
import (
"fmt"
)
type ListNode struct {
Val int
Next *ListNode
}
func HasCircle(head *ListNode) bool {
slow, fast := head, head.Next
if fast == nil || fast.Next == nil {
return false
}
for fast != nil && fast.Next != nil {
if slow == fast {
return true
}
slow = slow.Next
fast = fast.Next.Next
}
return false
}
func main() {
// create the list
head := &ListNode{Val: 1}
head.Next = &ListNode{Val: 2}
head.Next.Next = &ListNode{Val: 3}
head.Next.Next.Next = &ListNode{Val: 4}
head.Next.Next.Next = head.Next
fmt.Println("Is circle? ", HasCircle(head))
}
死去的记忆又在攻击我了,我想起多年前去一家互联网医疗公司面试的时候也遇到这道题,我也给出了这个解法,但是面试官一脸懵逼,无法理解我的思路。今天我仔细想想,也许是他想看到我用深度优先搜索(DFS)来实现。
所谓深度优先,就是一种递归算法,用于搜索图或树数据结构的所有顶点。该算法从起始节点开始,尽可能沿着每条路径探索,直到无法再前进为止,然后进行回溯。DFS通常使用堆栈来跟踪已发现的节点,以便进行回溯。这种算法的时间复杂度为O(V+E),其中V是顶点数,E是边数。在实际应用中,DFS还有许多应用,包括寻找连通分量、检测图中的环、拓扑排序等。
检测环,用它就对啦,实现如下所示:
func dfs(node *ListNode, visited map[*ListNode]bool) bool {
if node == nil {
return false
}
if visited[node] {
return true
}
visited[node] = true
return dfs(node.Next, visited)
}
func HasCircleByDFS(head *ListNode) bool {
visited := make(map[*ListNode]bool)
return dfs(head, visited)
}
func main() {
// create the list
head := &ListNode{Val: 1}
head.Next = &ListNode{Val: 2}
head.Next.Next = &ListNode{Val: 3}
head.Next.Next.Next = &ListNode{Val: 4}
head.Next.Next.Next = head.Next
fmt.Println("Is circle? ", HasCircleByDFS(head))
}
总结
有时候面试者需要去推测出题人的意图,条条道路虽然通罗马,但你的解法不一定能打动考官。