查找最陡坡度的起点和终点

a8jjtwal  于 2021-09-08  发布在  Java
关注(0)|答案(1)|浏览(317)

我必须找到数据集中最陡坡度的起点和终点。数据集显示了实验过程中的温度变化。冷却从大约420帧开始,到大约500帧结束。有人能帮我计算这些分数吗?

y = [308.09262874940794, 308.1216944088393, 308.2620809214068, 308.2185299674233, 308.0441705852154, 308.06355616177564, 307.9374947672655, 308.15075314506964, 308.0684020743851, 307.9859953521339, 308.0974735069697, 308.1265380121872, 308.09262874940794, 308.0780933219296, 307.9859953521339, 308.0247819257457, 308.0005417638036, 308.1555955950364, 308.09262874940794, 308.0780933219296, 308.17496347364175, 308.2185299674233, 308.20400953030344, 308.2378878644666, 308.2524042737181, 308.22336972940053, 308.3056163523782, 308.3829743977657, 308.34913627709466, 308.08778379939605, 308.3636394757246, 308.3636394757246, 308.3636394757246, 308.4844326170746, 308.4361296746482, 308.5375438416535, 308.460283529643, 308.5761557193945, 308.64852019740135, 308.69673945106905, 308.53271650065454, 308.6919183792268, 308.63405072092854, 308.55202472271446, 308.585806786816, 308.6533429765644, 308.6822756666845, 308.7690327906589, 308.64852019740135, 308.735301202496, 308.8364681549037, 308.77866868368494, 308.7690327906589, 308.8075718225567, 308.8701719464355, 308.75939614063134, 308.8172046893795, 308.69673945106905, 308.88942710227735, 308.9952765331329, 308.88942710227735, 309.1634857265685, 308.9375517868669, 308.9423632184057, 309.00489468840124, 308.9760379640753, 308.9423632184057, 309.0289367843301, 309.0385523062737, 308.9231163613786, 309.18269499806115, 308.9231163613786, 309.0000857048534, 309.20190127232803, 309.07700687606655, 309.0193205102312, 309.19709998467357, 308.9952765331329, 309.09142424016557, 309.05297417928875, 309.0577810944096, 309.20190127232803, 309.105839914524, 309.04816707624076, 309.11544942564836, 309.18749684756233, 309.1586829402123, 309.38900566395995, 309.31227925555163, 309.2690996495939, 309.2978877349221, 309.2211045507886, 309.283494533135, 309.2786964255123, 309.2115032859454, 309.1634857265685, 309.3362613889812, 309.3602388569431, 309.2786964255123, 309.29309018781777, 309.37462309944226, 309.14427345642935, 309.17789296123334, 309.2115032859454, 309.3650337909219, 309.31707605560723, 309.37462309944226, 309.30748226876693, 309.3314653356209, 309.302685095231, 309.3362613889812, 309.3362613889812, 309.2595021259639, 309.19709998467357, 309.2163040119527, 309.2786964255123, 309.0577810944096, 309.11544942564836, 309.2786964255123, 309.00970348379855, 309.0241287413112, 309.05297417928875, 309.04816707624076, 309.0818128518856, 309.0818128518856, 309.0818128518856, 309.1394699201895, 309.3650337909219, 309.2403048348614, 309.25470308370177, 309.20190127232803, 309.2163040119527, 309.22590490247524, 309.37462309944226, 309.2499038544454, 309.1298622851081, 309.23550504448957, 309.31707605560723, 309.2115032859454, 309.2307050670348, 309.11544942564836, 309.302685095231, 309.2499038544454, 309.3314653356209, 309.30748226876693, 309.18749684756233, 309.2115032859454, 309.06739436095876, 309.2211045507886, 309.1010348774497, 309.1634857265685, 309.0818128518856, 309.20190127232803, 309.2403048348614, 309.11064476391624, 309.17789296123334, 308.9808478887107, 309.07700687606655, 309.19709998467357, 309.09142424016557, 309.0193205102312, 309.0289367843301, 308.9664175499284, 309.05297417928875, 309.0385523062737, 309.1298622851081, 309.0337446393101, 309.2499038544454, 309.25470308370177, 309.0193205102312, 309.0289367843301, 309.04816707624076, 309.00489468840124, 309.0193205102312, 309.01451209106773, 309.0722007124317, 309.01451209106773, 308.9904671732171, 309.17789296123334, 309.00489468840124, 308.9375517868669, 308.9760379640753, 309.01451209106773, 308.9471744615032, 309.120253899743, 309.0193205102312, 309.0337446393101, 309.0625878216255, 309.0385523062737, 308.9616070603721, 309.120253899743, 309.11544942564836, 308.95198551618194, 309.1298622851081, 308.9423632184057, 309.06739436095876, 309.22590490247524, 309.00970348379855, 308.9760379640753, 309.01451209106773, 308.9664175499284, 309.0193205102312, 309.0722007124317, 308.9616070603721, 309.1538799664186, 309.2211045507886, 308.9086792391121, 308.9327401668644, 308.83165257198146, 309.0193205102312, 309.01451209106773, 309.0722007124317, 309.0722007124317, 309.0722007124317, 308.7304816467341, 308.8364681549037, 308.8364681549037, 308.8172046893795, 308.85572859746634, 308.9038664878567, 308.7738508317859, 308.9134918017692, 308.79312110424047, 308.7834863463787, 308.95198551618194, 308.80275510555146, 308.72566190154123, 308.8123883504919, 308.8075718225567, 308.8509137701496, 308.8268368001017, 308.86054323593794, 308.7304816467341, 308.7401205688495, 308.77866868368494, 308.77866868368494, 308.79793819945354, 308.7449397458172, 308.7690327906589, 308.74975873342174, 308.74975873342174, 308.7063810260086, 308.6774540259391, 308.8364681549037, 308.71602184277236, 308.71602184277236, 308.8075718225567, 308.7112015291512, 308.83165257198146, 308.71602184277236, 308.71602184277236, 308.60028196217667, 308.735301202496, 308.66298796553434, 308.7401205688495, 308.6919183792268, 308.61475542715624, 308.7834863463787, 308.8075718225567, 308.5471979526607, 308.6919183792268, 308.7401205688495, 308.7112015291512, 308.619579535504, 308.7208419668949, 308.619579535504, 308.735301202496, 308.7208419668949, 308.6919183792268, 308.75939614063134, 308.71602184277236, 308.7738508317859, 308.7015603333221, 308.6533429765644, 308.6244034539002, 308.6244034539002, 308.6919183792268, 308.8075718225567, 308.64369722842287, 308.8075718225567, 308.7112015291512, 308.7208419668949, 308.7112015291512, 308.7015603333221, 308.8123883504919, 308.7690327906589, 308.6774540259391, 308.6774540259391, 308.5278889692949, 308.61475542715624, 308.65816556593444, 308.6919183792268, 308.72566190154123, 308.6822756666845, 308.7015603333221, 308.79312110424047, 308.8268368001017, 308.7063810260086, 308.77866868368494, 308.88942710227735, 308.88942710227735, 308.62922718236746, 308.585806786816, 308.5713299004612, 308.619579535504, 308.59545709379574, 308.60510664051526, 308.6678101753866, 308.5471979526607, 308.6244034539002, 308.5713299004612, 308.513405232825, 308.59545709379574, 308.6678101753866, 308.51823333540295, 308.58098134817186, 308.5713299004612, 308.66298796553434, 308.5713299004612, 308.6678101753866, 308.561677692036, 308.60510664051526, 308.585806786816, 308.61475542715624, 308.58098134817186, 308.4747735540269, 308.619579535504, 308.5375438416535, 308.513405232825, 308.4844326170746, 308.53271650065454, 308.7545775316855, 308.619579535504, 308.5423709923146, 308.53271650065454, 308.58098134817186, 308.561677692036, 308.6099311288342, 308.63405072092854, 308.47960318085643, 308.59063203534976, 308.6388740696062, 308.5471979526607, 308.5761557193945, 308.5761557193945, 308.3829743977657, 308.619579535504, 308.513405232825, 308.5375438416535, 308.6099311288342, 308.5713299004612, 308.48926186270444, 308.55202472271446, 308.460283529643, 308.585806786816, 308.7545775316855, 308.49891978229, 308.4264667970933, 308.585806786816, 308.49409091776863, 308.56650389134927, 308.5713299004612, 308.55685130249867, 308.5085769397954, 308.7063810260086, 308.6099311288342, 308.56650389134927, 308.6533429765644, 308.58098134817186, 308.55685130249867, 308.55202472271446, 308.59545709379574, 308.71602184277236, 308.4506225599124, 308.585806786816, 308.72566190154123, 308.64369722842287, 308.619579535504, 308.561677692036, 308.44579178893633, 308.3539708678361, 308.5761557193945, 308.4747735540269, 308.5085769397954, 308.55202472271446, 308.5423709923146, 308.6244034539002, 308.6244034539002, 308.6244034539002, 308.59545709379574, 308.561677692036, 308.71602184277236, 308.7208419668949, 308.75939614063134, 308.7208419668949, 308.6919183792268, 308.7015603333221, 308.69673945106905, 308.6244034539002, 308.72566190154123, 308.6870971177729, 308.7208419668949, 308.67263219551404, 308.63405072092854, 308.58098134817186, 308.6099311288342, 308.7063810260086, 308.7401205688495, 308.71602184277236, 308.7063810260086, 308.59063203534976, 308.66298796553434, 308.61475542715624, 308.65816556593444, 308.3829743977657, 308.179804963093, 308.01993427899953, 307.7238623656049, 307.7870200759143, 307.79187700324024, 307.9956931528356, 307.7967337366716, 307.7432990008586, 307.65094729432553, 307.5828537304289, 307.4757723506065, 307.4757723506065, 307.5925837197807, 307.45629285398684, 307.4757723506065, 307.44655193263713, 307.43681022900745, 307.3442249919368, 307.3442249919368, 307.21741467075975, 306.9438325912993, 307.29546750001407, 307.1148939020285, 307.1246615279916, 307.1393114883849, 307.1246615279916, 307.2857136466891, 307.0171742273997, 307.1246615279916, 307.06115785452863, 307.1344283653618, 307.0709298211955, 306.95850448065585, 306.95850448065585, 307.01228616964715, 306.7970155589062, 306.86065819859596, 306.9438325912993, 306.80191233851883, 306.95361404887177, 306.9633947144708, 306.91448346480337, 306.7578341641973, 306.77742645250083, 306.7186400356454, 306.80191233851883, 306.7627325346616, 306.7333393268934, 306.6402135269444, 306.7872214033432, 306.6647272939214, 306.7627325346616, 306.65982493948627, 306.6255028723101, 306.772528678789, 306.7431378589092, 306.65492238559546, 306.6255028723101, 306.586265674549, 306.58136012587954, 306.58136012587954, 306.35548845128324, 306.4341006255742, 306.4341006255742, 306.4586563943867, 306.4341006255742, 306.27190663753186, 306.27682482487546, 306.3112464989674, 306.46356694665616, 306.3063297207779, 306.3161630759486, 306.34074294360084, 306.1587326897794, 306.2030308556243, 305.9665846821754, 305.9419280279521, 305.76425004708364, 305.93699608794924, 305.79388137173896, 305.7049653605219, 305.71484818345783, 305.630818125787, 305.7790666270583, 305.6654258946194, 305.7395516668316, 305.8136315109291, 306.1242672507756, 306.3456583138544, 306.42918887014565, 306.35057348307356, 306.5372011917228, 306.49793520160534, 306.6156947711249, 306.5715484289708, 306.42918887014565, 306.6451166793491, 306.7137398736051, 306.6843347175962, 306.6696294489255, 306.6696294489255, 306.6255028723101, 306.7382386924333, 306.76763070618404, 306.7235399985239, 306.77742645250083, 306.7823240273442, 306.88023379933344, 306.77742645250083, 306.9046988373983, 306.8704463957765, 306.86065819859596, 306.95361404887177, 306.96828475034096, 306.8655523964013, 306.9046988373983, 306.855763802336, 306.9193754812128, 306.96828475034096, 307.05627157501516, 306.9633947144708, 306.95361404887177, 307.0025094610091, 306.92915891956665, 307.0025094610091, 307.08070099820964, 306.9633947144708, 307.0416115514648, 307.15884200995754, 306.96828475034096, 307.09047138576403, 307.0025094610091, 307.05627157501516, 307.1978935996081, 307.1734878327647, 307.19301283991086, 307.19301283991086, 307.1344283653618, 307.14419441433193, 307.0660439365807, 307.17836937985277, 307.10512548728025, 307.1881318834019, 307.17836937985277, 307.2564473733913, 307.15884200995754, 307.28083642550376, 307.28083642550376, 306.8900204094612, 307.2662035835691, 307.2662035835691, 307.2662035835691, 307.32959980418053, 307.24181158431395, 307.30522056810406, 307.23205340877587, 307.3003441322015, 307.3003441322015, 307.22229444675827, 307.1100097932646, 307.23205340877587, 307.2466903772131, 307.2613255767183, 307.3247243493438, 307.8889748630513, 307.30522056810406, 307.3978355878861, 307.40758042253736, 307.2857136466891, 307.2515689735642, 307.19301283991086, 307.3393501254531, 307.2857136466891, 307.38808997000365, 307.4027081031038, 307.38808997000365, 307.3442249919368, 307.33447506287564, 307.4319390837782, 307.40758042253736, 307.28083642550376, 307.2857136466891, 307.3149728511503, 307.3832168672912, 307.36372249741055, 307.3490996623505, 307.31984869834173, 307.4124525462108, 307.47090276965224, 307.48064173613346, 307.3003441322015, 307.41732447414785, 307.5147219648439, 307.45629285398684, 307.45629285398684, 307.3832168672912, 307.5147219648439, 307.6120413603623, 307.5682572845433, 307.50985394664536, 307.57798844340505, 307.3978355878861, 307.4027081031038, 307.36372249741055, 307.5390591277433, 307.45629285398684, 307.4270677429077, 307.4952487203862, 307.48064173613346, 307.45142249108505, 307.3978355878861, 307.62176901196995, 307.5390591277433, 307.6606718315838, 307.5001173244402, 307.5147219648439, 307.6801185719411, 307.6314958847072, 307.573122961451, 307.52932484810736, 307.50985394664536, 307.573122961451, 307.63635902905844, 307.57798844340505, 307.6266325456856, 307.5828537304289, 307.7044226227817, 307.68497977088464, 307.62176901196995, 307.65094729432553, 307.5390591277433, 307.60231292969553, 307.50498573318544, 307.573122961451, 307.62176901196995, 307.7821629546704, 307.6120413603623, 307.5828537304289, 307.50985394664536, 307.6120413603623, 307.48064173613346, 307.48064173613346, 307.48064173613346, 307.33447506287564, 307.4416811786191, 307.5536590838609, 307.5682572845433, 307.65094729432553, 307.77244813033496, 307.50498573318544, 307.5147219648439, 307.69956220134196, 307.60717724242306, 307.646084733844, 307.68984077541694, 307.7675904271966, 307.5828537304289, 307.61690528353665, 307.65094729432553, 307.7190027212925, 307.6266325456856, 307.646084733844, 307.6120413603623, 307.5390591277433, 307.65094729432553, 307.6266325456856, 307.67525717856273, 307.7190027212925, 307.8938277235077, 307.6606718315838, 307.7675904271966, 307.646084733844, 307.7432990008586, 307.77244813033496, 307.6606718315838, 307.73358107158396, 307.80159027623193, 307.6412219787628, 307.69956220134196, 307.7044226227817, 307.7384401332976, 307.65094729432553, 307.7092828499044, 307.84529041194054, 307.7092828499044, 307.6703955907262, 307.7481576742905, 307.6606718315838, 307.5487926269017, 307.66553380840764, 307.53419208549684, 307.8938277235077, 307.75787443886094, 307.7092828499044, 307.7821629546704, 307.77244813033496, 307.68497977088464, 307.75787443886094, 307.65580966023083, 307.68984077541694, 307.73358107158396, 307.71414288273354, 307.7092828499044, 307.65580966023083, 307.82101449623093, 307.9471964290412, 307.7967337366716, 307.84043561616613, 307.75787443886094, 307.9180891252065, 307.8598536375354, 307.8598536375354, 307.84043561616613, 307.7384401332976, 307.8307254436129, 307.73358107158396, 307.82101449623093, 307.87926856183515, 307.7190027212925, 307.8064466219446, 307.8889748630513, 307.72872181569426, 307.93264364659916, 307.8744151210287, 307.8938277235077, 307.8598536375354, 307.83558062673137, 307.85014501407795, 307.8064466219446, 307.82587006678716, 307.83558062673137, 307.75787443886094, 307.8598536375354, 307.7481576742905, 307.7481576742905, 307.7481576742905, 307.5974484221559, 307.5828537304289, 307.7092828499044, 307.8064466219446, 307.65094729432553, 307.7821629546704, 307.87926856183515, 307.7675904271966, 307.93264364659916, 307.7044226227817, 307.7821629546704, 307.7627325300463, 307.7092828499044, 307.7530161536168, 307.7384401332976, 307.7044226227817, 307.7821629546704, 307.7044226227817, 307.89868039056074, 307.9180891252065, 307.87926856183515, 307.7481576742905, 307.84529041194054, 307.82101449623093, 307.91323723153334, 307.92294082559295, 307.7432990008586, 307.8307254436129, 307.65094729432553, 307.81130277383306, 307.9471964290412, 307.8938277235077, 307.75787443886094, 307.85014501407795, 307.7530161536168, 307.90838514455027, 307.72872181569426, 307.84529041194054]

在我的第一次尝试中,我使用了最大累积:

i = np.argmax(np.maximum.accumulate(y) - y)
j = np.argmax(y[:i])
plt.plot(y)
plt.plot([i, j], [y[i], y[j]], 'o', color='Red', markersize=10)


它发现降幅最大,但不是最陡的

inkz8wg9

inkz8wg91#

当我听到斜率时,我想到导数,所以我想要一个有导数的函数。我用样条插值得到一个。如果您不熟悉样条曲线,它们基本上是缝合在一起形成平滑函数的多项式。

from scipy.interpolate import UnivariateSpline
x = np.arange(len(y))
f = UnivariateSpline(x, y, s=7)
plt.plot(x,f(x))

在玩过游戏之后 s 我知道了

现在我想在斜坡上找到一个突然的跳跃点来切断。因此,我绘制有序负斜率,同时忽略前50个值。

dy = np.sort(f.derivative()(x[50:]))
plt.plot(dy[dy<0])


在我看来,在-0.01左右有一个突然的跳跃。因此,让我们尝试标记所有坡度更陡,即小于该坡度,同时忽略前50个值。

idx = np.argwhere((f.derivative()(x) < -0.01) & (x > 50))
points = x[idx]
plt.plot(x,f(x))
plt.scatter(points,f(points), c='r')


当我们在这里的时候,我们也可以打印区域开始和结束的x坐标

idx.min(), idx.max()

给我们

(403, 496)

相关问题