找到字符串的所有排列的优雅方法是什么。e、 g.用于 ba ,将是 ba 及 ab ,但对于较长的字符串,例如 defgh ? 是否有任何java实现示例?
ba
ab
defgh
bsxbgnwa1#
如果有人想生成置换来处理它们,而不是通过void方法打印它们:
static List<int[]> permutations(int n) { class Perm { private final List<int[]> permutations = new ArrayList<>(); private void perm(int[] array, int step) { if (step == 1) permutations.add(array.clone()); else for (int i = 0; i < step; i++) { perm(array, step - 1); int j = (step % 2 == 0) ? i : 0; swap(array, step - 1, j); } } private void swap(int[] array, int i, int j) { int buffer = array[i]; array[i] = array[j]; array[j] = buffer; } } int[] nVector = new int[n]; for (int i = 0; i < n; i++) nVector [i] = i; Perm perm = new Perm(); perm.perm(nVector, n); return perm.permutations;}
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
x3naxklr2#
使用es6的字符串置换使用reduce()方法
const permutations = str => { if (str.length <= 2) return str.length === 2 ? [str, str[1] + str[0]] : [str]; return str .split('') .reduce( (acc, letter, index) => acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)), [] );};console.log(permutations('STR'));
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
nhn9ugyo3#
打印给定字符串的所有排列(考虑重复字符)并仅打印唯一字符的java实现如下所示:
import java.util.Set;import java.util.HashSet;public class PrintAllPermutations2{ public static void main(String[] args) { String str = "AAC"; PrintAllPermutations2 permutation = new PrintAllPermutations2(); Set<String> uniqueStrings = new HashSet<>(); permutation.permute("", str, uniqueStrings);}void permute(String prefixString, String s, Set<String> set){ int n = s.length(); if(n == 0) { if(!set.contains(prefixString)) { System.out.println(prefixString); set.add(prefixString); } } else { for(int i=0; i<n; i++) { permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set); } }}}
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
void permute(String prefixString, String s, Set<String> set)
int n = s.length();
if(n == 0)
if(!set.contains(prefixString))
System.out.println(prefixString);
set.add(prefixString);
else
for(int i=0; i<n; i++)
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
d7v8vwbk4#
下面是另一种更简单的字符串排列方法。
public class Solution4 {public static void main(String[] args) { String a = "Protijayi"; per(a, 0);}static void per(String a , int start ) { //bse case; if(a.length() == start) {System.out.println(a);} char[] ca = a.toCharArray(); //swap for (int i = start; i < ca.length; i++) { char t = ca[i]; ca[i] = ca[start]; ca[start] = t; per(new String(ca),start+1); }}//per}
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}//per
7tofc5zh5#
import java.io.IOException;import java.util.ArrayList;import java.util.Scanner;public class hello { public static void main(String[] args) throws IOException { hello h = new hello(); h.printcomp(); } int fact=1; public void factrec(int a,int k){ if(a>=k) {fact=fact*k; k++; factrec(a,k); } else {System.out.println("The string will have "+fact+" permutations"); } } public void printcomp(){ String str; int k; Scanner in = new Scanner(System.in); System.out.println("enter the string whose permutations has to b found"); str=in.next(); k=str.length(); factrec(k,1); String[] arr =new String[fact]; char[] array = str.toCharArray(); while(p<fact) printcomprec(k,array,arr); // if incase u need array containing all the permutation use this //for(int d=0;d<fact;d++) //System.out.println(arr[d]); } int y=1; int p = 0; int g=1; int z = 0; public void printcomprec(int k,char array[],String arr[]){ for (int l = 0; l < k; l++) { for (int b=0;b<k-1;b++){ for (int i=1; i<k-g; i++) { char temp; String stri = ""; temp = array[i]; array[i] = array[i + g]; array[i + g] = temp; for (int j = 0; j < k; j++) stri += array[j]; arr[z] = stri; System.out.println(arr[z] + " " + p++); z++; } } char temp; temp=array[0]; array[0]=array[y]; array[y]=temp; if (y >= k-1) y=y-(k-1); else y++; } if (g >= k-1) g=1; else g++; }}
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
{System.out.println("The string will have "+fact+" permutations");
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
y++;
if (g >= k-1)
g=1;
g++;
x33g5p2x6#
字符串的排列:
public static void main(String args[]) { permu(0,"ABCD");}static void permu(int fixed,String s) { char[] chr=s.toCharArray(); if(fixed==s.length()) System.out.println(s); for(int i=fixed;i<s.length();i++) { char c=chr[i]; chr[i]=chr[fixed]; chr[fixed]=c; permu(fixed+1,new String(chr)); } }
public static void main(String args[]) {
permu(0,"ABCD");
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
s5a0g9ez7#
我的实现基于mark byers的上述描述:
static Set<String> permutations(String str){ if (str.isEmpty()){ return Collections.singleton(str); }else{ Set <String> set = new HashSet<>(); for (int i=0; i<str.length(); i++) for (String s : permutations(str.substring(0, i) + str.substring(i+1))) set.add(str.charAt(i) + s); return set; } }
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
xwbd5t1u8#
递归是没有必要的,即使你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。这里有一个关于这个算法的好信息。对于c#开发人员来说,这里是更有用的实现。
public static void main(String[] args) { String word = "12345"; Character[] array = ArrayUtils.toObject(word.toCharArray()); long[] factorials = Permutation.getFactorials(array.length + 1); for (long i = 0; i < factorials[array.length]; i++) { Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials); printPermutation(permutation); }}private static void printPermutation(Character[] permutation) { for (int i = 0; i < permutation.length; i++) { System.out.print(permutation[i]); } System.out.println();}
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
System.out.println();
该算法具有o(n)时间和空间复杂度来计算每个置换。
public class Permutation { public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) { int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials); T[] permutation = generatePermutation(array, sequence); return permutation; } public static <T> T[] generatePermutation(T[] array, int[] sequence) { T[] clone = array.clone(); for (int i = 0; i < clone.length - 1; i++) { swap(clone, i, i + sequence[i]); } return clone; } private static int[] generateSequence(long permutationNumber, int size, long[] factorials) { int[] sequence = new int[size]; for (int j = 0; j < sequence.length; j++) { long factorial = factorials[sequence.length - j]; sequence[j] = (int) (permutationNumber / factorial); permutationNumber = (int) (permutationNumber % factorial); } return sequence; } private static <T> void swap(T[] array, int i, int j) { T t = array[i]; array[i] = array[j]; array[j] = t; } public static long[] getFactorials(int length) { long[] factorials = new long[length]; long factor = 1; for (int i = 0; i < length; i++) { factor *= i <= 1 ? 1 : i; factorials[i] = factor; } return factorials; }}
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
return clone;
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
return sequence;
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[j] = t;
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
return factorials;
bq9c1y669#
另一种简单的方法是循环字符串,选择尚未使用的字符并将其放入缓冲区,继续循环,直到缓冲区大小等于字符串长度。我更喜欢这种回溯解决方案,因为:易懂易于避免重复输出被排序以下是java代码:
List<String> permute(String str) { if (str == null) { return null; } char[] chars = str.toCharArray(); boolean[] used = new boolean[chars.length]; List<String> res = new ArrayList<String>(); StringBuilder sb = new StringBuilder(); Arrays.sort(chars); helper(chars, used, sb, res); return res;}void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) { if (sb.length() == chars.length) { res.add(sb.toString()); return; } for (int i = 0; i < chars.length; i++) { // avoid duplicates if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) { continue; } // pick the character that has not used yet if (!used[i]) { used[i] = true; sb.append(chars[i]); helper(chars, used, sb, res); // back tracking sb.deleteCharAt(sb.length() - 1); used[i] = false; } }}
List<String> permute(String str) {
if (str == null) {
return null;
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
输入str:1231输出列表:{1123、1132、1213、1231、1312、1321、2113、2131、2311、3112、3121、3211}请注意,输出已排序,并且没有重复的结果。
64jmpszr10#
//Rotate and create words beginning with all letter possible and push to stack 1//Read from stack1 and for each word create words with other letters at the next location by rotation and so on /* eg : man 1. push1 - man, anm, nma 2. pop1 - nma , push2 - nam,nma pop1 - anm , push2 - amn,anm pop1 - man , push2 - mna,man* /public class StringPermute { static String str; static String word; static int top1 = -1; static int top2 = -1; static String[] stringArray1; static String[] stringArray2; static int strlength = 0; public static void main(String[] args) throws IOException { System.out.println("Enter String : "); InputStreamReader isr = new InputStreamReader(System.in); BufferedReader bfr = new BufferedReader(isr); str = bfr.readLine(); word = str; strlength = str.length(); int n = 1; for (int i = 1; i <= strlength; i++) { n = n * i; } stringArray1 = new String[n]; stringArray2 = new String[n]; push(word, 1); doPermute(); display(); } public static void push(String word, int x) { if (x == 1) stringArray1[++top1] = word; else stringArray2[++top2] = word; } public static String pop(int x) { if (x == 1) return stringArray1[top1--]; else return stringArray2[top2--]; } public static void doPermute() { for (int j = strlength; j >= 2; j--) popper(j); } public static void popper(int length) { // pop from stack1 , rotate each word n times and push to stack 2 if (top1 > -1) { while (top1 > -1) { word = pop(1); for (int j = 0; j < length; j++) { rotate(length); push(word, 2); } } } // pop from stack2 , rotate each word n times w.r.t position and push to // stack 1 else { while (top2 > -1) { word = pop(2); for (int j = 0; j < length; j++) { rotate(length); push(word, 1); } } } } public static void rotate(int position) { char[] charstring = new char[100]; for (int j = 0; j < word.length(); j++) charstring[j] = word.charAt(j); int startpos = strlength - position; char temp = charstring[startpos]; for (int i = startpos; i < strlength - 1; i++) { charstring[i] = charstring[i + 1]; } charstring[strlength - 1] = temp; word = new String(charstring).trim(); } public static void display() { int top; if (top1 > -1) { while (top1 > -1) System.out.println(stringArray1[top1--]); } else { while (top2 > -1) System.out.println(stringArray2[top2--]); } }}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
* /
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
stringArray2[++top2] = word;
public static String pop(int x) {
return stringArray1[top1--];
return stringArray2[top2--];
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
public static void display() {
int top;
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
2w2cym1i11#
//将每个字符插入arraylist
static ArrayList al = new ArrayList();private static void findPermutation (String str){ for (int k = 0; k < str.length(); k++) { addOneChar(str.charAt(k)); }}//insert one char into ArrayListprivate static void addOneChar(char ch){ String lastPerStr; String tempStr; ArrayList locAl = new ArrayList(); for (int i = 0; i < al.size(); i ++ ){ lastPerStr = al.get(i).toString(); //System.out.println("lastPerStr: " + lastPerStr); for (int j = 0; j <= lastPerStr.length(); j++) { tempStr = lastPerStr.substring(0,j) + ch + lastPerStr.substring(j, lastPerStr.length()); locAl.add(tempStr); //System.out.println("tempStr: " + tempStr); } } if(al.isEmpty()){ al.add(ch); } else { al.clear(); al = locAl; }}private static void printArrayList(ArrayList al){ for (int i = 0; i < al.size(); i++) { System.out.print(al.get(i) + " "); }}
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
if(al.isEmpty()){
al.add(ch);
al.clear();
al = locAl;
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
4ioopgfo12#
无递归的java实现
public Set<String> permutate(String s){ Queue<String> permutations = new LinkedList<String>(); Set<String> v = new HashSet<String>(); permutations.add(s); while(permutations.size()!=0){ String str = permutations.poll(); if(!v.contains(str)){ v.add(str); for(int i = 0;i<str.length();i++){ String c = String.valueOf(str.charAt(i)); permutations.add(str.substring(i+1) + c + str.substring(0,i)); } } } return v;}
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
return v;
ctzwtxfj13#
我们可以使用阶乘计算以特定字母开头的字符串数量。示例:以输入为例 d . (3!) == 6 字符串将以字符串的每个字母开头 d .
d
(3!) == 6
static public int facts(int x){ int sum = 1; for (int i = 1; i < x; i++) { sum *= (i+1); } return sum;}public static void permutation(String str) { char[] str2 = str.toCharArray(); int n = str2.length; int permutation = 0; if (n == 1) { System.out.println(str2[0]); } else if (n == 2) { System.out.println(str2[0] + "" + str2[1]); System.out.println(str2[1] + "" + str2[0]); } else { for (int i = 0; i < n; i++) { if (true) { char[] str3 = str.toCharArray(); char temp = str3[i]; str3[i] = str3[0]; str3[0] = temp; str2 = str3; } for (int j = 1, count = 0; count < facts(n-1); j++, count++) { if (j != n-1) { char temp1 = str2[j+1]; str2[j+1] = str2[j]; str2[j] = temp1; } else { char temp1 = str2[n-1]; str2[n-1] = str2[1]; str2[1] = temp1; j = 1; } // end of else block permutation++; System.out.print("permutation " + permutation + " is -> "); for (int k = 0; k < n; k++) { System.out.print(str2[k]); } // end of loop k System.out.println(); } // end of loop j } // end of loop i }}
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
return sum;
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
} // end of loop j
} // end of loop i
dojqjjoe14#
下面是一个简单的java最小递归解决方案:
public static ArrayList<String> permutations(String s) { ArrayList<String> out = new ArrayList<String>(); if (s.length() == 1) { out.add(s); return out; } char first = s.charAt(0); String rest = s.substring(1); for (String permutation : permutations(rest)) { out.addAll(insertAtAllPositions(first, permutation)); } return out;}public static ArrayList<String> insertAtAllPositions(char ch, String s) { ArrayList<String> out = new ArrayList<String>(); for (int i = 0; i <= s.length(); ++i) { String inserted = s.substring(0, i) + ch + s.substring(i); out.add(inserted); } return out;}
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
mwyxok5s15#
/**Returns an array list containing all * permutations of the characters in s. */public static ArrayList<String> permute(String s) { ArrayList<String> perms = new ArrayList<>(); int slen = s.length(); if (slen > 0) { // Add the first character from s to the perms array list. perms.add(Character.toString(s.charAt(0))); // Repeat for all additional characters in s. for (int i = 1; i < slen; ++i) { // Get the next character from s. char c = s.charAt(i); // For each of the strings currently in perms do the following: int size = perms.size(); for (int j = 0; j < size; ++j) { // 1. remove the string String p = perms.remove(0); int plen = p.length(); // 2. Add plen + 1 new strings to perms. Each new string // consists of the removed string with the character c // inserted into it at a unique location. for (int k = 0; k <= plen; ++k) { perms.add(p.substring(0, k) + c + p.substring(k)); } } } } return perms;}
/**Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
return perms;
30条答案
按热度按时间bsxbgnwa1#
如果有人想生成置换来处理它们,而不是通过void方法打印它们:
x3naxklr2#
使用es6的字符串置换
使用reduce()方法
nhn9ugyo3#
打印给定字符串的所有排列(考虑重复字符)并仅打印唯一字符的java实现如下所示:
d7v8vwbk4#
下面是另一种更简单的字符串排列方法。
7tofc5zh5#
x33g5p2x6#
字符串的排列:
s5a0g9ez7#
我的实现基于mark byers的上述描述:
xwbd5t1u8#
递归是没有必要的,即使你可以直接计算任何排列,这个解决方案使用泛型来排列任何数组。
这里有一个关于这个算法的好信息。
对于c#开发人员来说,这里是更有用的实现。
该算法具有o(n)时间和空间复杂度来计算每个置换。
bq9c1y669#
另一种简单的方法是循环字符串,选择尚未使用的字符并将其放入缓冲区,继续循环,直到缓冲区大小等于字符串长度。我更喜欢这种回溯解决方案,因为:
易懂
易于避免重复
输出被排序
以下是java代码:
输入str:1231
输出列表:{1123、1132、1213、1231、1312、1321、2113、2131、2311、3112、3121、3211}
请注意,输出已排序,并且没有重复的结果。
64jmpszr10#
2w2cym1i11#
//将每个字符插入arraylist
4ioopgfo12#
无递归的java实现
ctzwtxfj13#
我们可以使用阶乘计算以特定字母开头的字符串数量。
示例:以输入为例
d
.(3!) == 6
字符串将以字符串的每个字母开头d
.dojqjjoe14#
下面是一个简单的java最小递归解决方案:
mwyxok5s15#