我的程序里有一个函数,它可以使一个点(x_p, y_p, z_p)
绕另一个点(x_m, y_m, z_m)
旋转,旋转Angular 为w_nx
和w_ny
。
新的坐标存储在全局变量x_n
、y_n
和z_n
中。(因此改变w_nx
的值-以便不损害y
的值)是否正常工作,但当我绕x-
或z-
轴旋转时(修改w_ny
的值)坐标不再准确。我在我认为错误所在的行上进行了评论,但我不知道代码有什么问题。
void rotate(float x_m, float y_m, float z_m, float x_p, float y_p, float z_p, float w_nx ,float w_ny)
{
float z_b = z_p - z_m;
float x_b = x_p - x_m;
float y_b = y_p - y_m;
float length_ = sqrt((z_b*z_b)+(x_b*x_b)+(y_b*y_b));
float w_bx = asin(z_b/sqrt((x_b*x_b)+(z_b*z_b))) + w_nx;
float w_by = asin(x_b/sqrt((x_b*x_b)+(y_b*y_b))) + w_ny; //<- there must be that fault
x_n = cos(w_bx)*sin(w_by)*length_+x_m;
z_n = sin(w_bx)*sin(w_by)*length_+z_m;
y_n = cos(w_by)*length_+y_m;
}
4条答案
按热度按时间c3frrgcw1#
代码几乎可以完成的工作:
有两个问题:
因此,在这种情况下,使用矩阵和向量数学将有所帮助:
基本旋转矩阵。
lrpiutwd2#
尝试使用矢量数学。决定旋转的顺序,首先沿着
x
,然后沿着y
。如果沿着
z-axis
旋转,则[z' = z]
对
y-axis
重复相同的步骤:[y'' = y']
再次沿着
x-axis
旋转:[x''' = x'']
最后是围绕某个特定“点”旋转的问题:
首先,从坐标中减去该点,然后应用旋转,最后将该点添加回结果。
这个问题,据我所见,是一个密切相关的“万向节锁定”。Angular
w_ny
不能相对于固定的xyz坐标系测量,但相对于坐标系,是通过应用Angularw_nx
旋转。作为kakTuZ observed,您的代码将点坐标转换为球坐标。这本身没有什么问题--有了经度和纬度,我们可以到达地球上的所有地方。如果我们不关心地球赤道平面相对于其绕太阳的轨道的倾斜,我也可以接受。
不沿着第一个
w_ny
旋转下一个参考轴的结果是,在赤道上彼此相距1 km的两个点在两极和90度纬度上彼此靠近,它们接触,尽管表面上的目的是使它们在旋转的任何地方都相距1 km。ldfqzlk83#
如果你想转换坐标系而不是仅仅点,你需要3个Angular 。但是你是对的-对于转换点2个Angular 就足够了。详细信息请询问Wikipedia...
但是当你使用opengl时,你真的应该使用像
glRotatef
这样的opengl函数。这些函数将在GPU上计算--而不是像你的函数那样在CPU上计算。doc是here。velaa5lx4#
就像很多人说的那样,你应该使用glRotatef来旋转它以进行渲染。对于冲突处理,你可以通过将它的位置向量乘以渲染点堆栈顶部的OpenGL ModelView矩阵来获得它的世界空间位置。使用glGetFloatv获得该矩阵,然后将它乘以你自己的向量矩阵乘法函数,或者使用您可以在网上轻松获得的众多工具中的一种。
但是,这将是一个痛苦!相反,考虑使用GL反馈缓冲区。这个缓冲区将只存储图元将被绘制的点,而不是实际绘制图元,然后你可以从那里访问它们。
This是一个很好的起点。