我使用下面的代码来求分段多项式函数
import scipy
from scipy.interpolate import UnivariateSpline, splrep
x = np.array([0., 0.75, 1.8, 2.25, 3.75, 4.5, 6.45, 6.75,
7.5, 8.325, 10.875, 11.25, 12.525, 12.75, 15.,
20.85, 21.])
y = np.array([2.83811035, 2.81541896, 3.14311655,
3.22373554, 3.43033456, 3.50433385,
3.66794514, 3.462296, 3.59480959,
3.56250726, 3.6209845, 3.63034523,
3.68238915, 3.69096892, 3.75560395,
3.83545191, 3.90419498])
k = 3 # polynomial order
spl = UnivariateSpline(x, y, k=3, s=0.09)
xs = np.linspace(x.min(), x.max(), 100)
plt.plot(x, y, 'ro', ms=5)
plt.plot(xs, spl(xs), 'cyan', lw=5, alpha=0.3)
# get spline coeffs and knots
tck = (spl._data[8], spl._data[9], k) # tck = (knots, coefficients, degree)
p = scipy.interpolate.PPoly.from_spline(tck)
# plot each segment and return knots and coeffs
for idx, i in enumerate(range(k, len(spl.get_knots()) + k - 1)):
xs = np.linspace(p.x[i], p.x[i + 1], 100)
plt.plot(xs, np.polyval(p.c[:, i], xs - p.x[i]))
print("knot ", p.x[i], " to ", p.x[i + 1])
print("coeffs ", p.c[:, i], "\n")
f0 = lambda x: p.c[0, i] * (x - p.x[i])**3 + p.c[1, i] * (x - p.x[i])**2 + p.c[2, i] * (x - p.x[i]) + p.c[3, i]
f0 = lambda x: [p.c[:, i] * (x - p.x[i])**(3 - i) for i in range(k + 1)] # k = degree i.e no. of. coeffs = degree +1
print(f0)
plt.show()
print(f0)
输出
相反,我希望显示多项式表达式。
关于如何做到这一点的建议将会非常有帮助。
编辑:
我在一个帖子https://stackoverflow.com/a/60114991/8281509中找到了以下内容。但不知道如何将其用于我的情况。
from sympy import lambdify, bspline_basis_set
from sympy.abc import u
basis = bspline_basis_set(tck[2], tck[0], u)
for i, b in enumerate(basis):
print(f"Basis {i} :", b)
返回16个基函数,而我只期望3个
1条答案
按热度按时间62lalag41#
您可以使用如下的字串格式:
输出量:
数组的内容会被打印出来。如果你不需要它,就用文字
u
来替换它,如下所示:输出量: