scipy Matlab带通滤波器在python中的等价实现

k2fxgqgv  于 2022-11-10  发布在  Matlab
关注(0)|答案(1)|浏览(247)

在matlab中有一个我经常使用的函数bandpass,这个函数的文档可以在这里找到:https://ch.mathworks.com/help/signal/ref/bandpass.html
我正在寻找一种方法,在Python中应用带通滤波器,并获得相同或几乎相同的输出滤波信号。
我的信号可以从这里下载:https://gofile.io/?c=JBGVsH
Matlab代码:

  1. load('mysignal.mat')
  2. y = bandpass(x, [0.015,0.15], 1/0.7);
  3. plot(x);hold on; plot(y)

Python代码:

  1. import matplotlib.pyplot as plt
  2. import scipy.io
  3. from scipy.signal import butter, lfilter
  4. x = scipy.io.loadmat("mysignal.mat")['x']
  5. def butter_bandpass(lowcut, highcut, fs, order=5):
  6. nyq = 0.5 * fs
  7. low = lowcut / nyq
  8. high = highcut / nyq
  9. b, a = butter(order, [low, high], btype='band')
  10. return b, a
  11. def butter_bandpass_filter(data, lowcut, highcut, fs, order=6):
  12. b, a = butter_bandpass(lowcut, highcut, fs, order=order)
  13. y = lfilter(b, a, data)
  14. return y
  15. y = butter_bandpass_filter(x, 0.015, 0.15, 1/0.7, order=6)
  16. plt.plot(x);plt.plot(y);plt.show()

我需要在python中找到一种方法来应用类似于Matlab示例代码块中的过滤。

mzmfm0qo

mzmfm0qo1#

我最喜欢的解决方案是Creating lowpass filter in SciPy - understanding methods and units,我将其更改为带通示例:

  1. # !/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. bandpass example, from
  5. https://stackoverflow.com/questions/25191620/creating-lowpass-filter-in-scipy-understanding-methods-and-units
  6. pl, 22.05.2022
  7. """
  8. import numpy as np
  9. from scipy.signal import butter, lfilter, freqz
  10. import matplotlib.pyplot as plt
  11. def butter_bandpass(lowcut, highcut, fs, order=5):
  12. b, a = butter(order, [lowcut, highcut], fs=fs, btype='band')
  13. return b, a
  14. def butter_bandpass_filter(data, lowcut, highcut, fs, order=6):
  15. b, a = butter_bandpass(lowcut, highcut, fs, order=order)
  16. y = lfilter(b, a, data)
  17. return y
  18. # Filter requirements.
  19. order = 6
  20. fs = 60.0 # sample rate, Hz
  21. # cutoff = 3.667 # desired cutoff frequency of the filter, Hz
  22. cutoffLo = 2.0
  23. cutoffHi = 4.0
  24. # Demonstrate the use of the filter.
  25. # First make some data to be filtered.
  26. T = 5.0 # seconds
  27. n = int(T * fs) # total number of samples
  28. t = np.linspace(0, T, n, endpoint=False)
  29. # "Noisy" data. We want to recover the 1.2 Hz signal from this.
  30. fl=1.2 # Hz
  31. f0=3.0 # Hz
  32. fh=7.0 # Hz
  33. al=2.5
  34. a0=1.0
  35. ah=3.5
  36. w=2*np.pi # Omega
  37. data = f0 * np.sin(w*f0*t) \
  38. + fl * np.sin(w*fl*t) \
  39. + fh * np.sin(w*fh*t) \
  40. + 8.0
  41. # Get the filter coefficients so we can check its frequency response.
  42. b, a = butter_bandpass(cutoffLo, cutoffHi, fs, order)
  43. # Plot the frequency response.
  44. w, h = freqz(b, a, fs=fs, worN=8000)
  45. plt.subplot(2, 1, 1)
  46. plt.plot(w, np.abs(h), 'b')
  47. plt.plot(cutoffLo, 0.5*np.sqrt(2), 'ko')
  48. plt.plot(cutoffHi, 0.5*np.sqrt(2), 'ko')
  49. plt.axvline(cutoffLo, color='k')
  50. plt.axvline(cutoffHi, color='k')
  51. plt.axvline(fl, color='r',linestyle=":")
  52. plt.axvline(f0, color='r',linestyle="-.")
  53. plt.axvline(fh, color='r',linestyle=":")
  54. plt.xlim(0, 2.0*cutoffHi)
  55. plt.title("Bandpass Filter Frequency Response")
  56. plt.xlabel('Frequency [Hz]')
  57. plt.grid()
  58. # Filter the data, and plot both the original and filtered signals.
  59. y = butter_bandpass_filter(data, cutoffLo, cutoffHi, fs, order)
  60. plt.subplot(2, 1, 2)
  61. plt.plot(t, data, 'b-', label='data')
  62. plt.plot(t, y, 'g-', linewidth=2, label='filtered data')
  63. plt.xlabel('Time [sec]')
  64. plt.grid()
  65. plt.legend()
  66. plt.subplots_adjust(hspace=0.35)
  67. plt.show()

展开查看全部

相关问题