我正在编写一个使用自动编码器将文本从英语翻译成西班牙语的示例(link)。我的代码设置与示例完全相同,但它失败了,并出现错误:
不兼容的形状:[64,8,20,20]与[64,64,20,20] {{节点梯度_磁带/转换器/转换器_编码器/多头_注意/软最大值/添加/广播梯度参数}} [Op:__inference_train_function_16963]
下面是我的完整代码:
with open('spa.txt', encoding="utf8") as f:
lines = f.read().split("\n")[:-1]
text_pairs = []
for line in lines:
eng, spa = line.split("\t")
spa = "[start] " + spa + " [end]"
text_pairs.append((eng, spa))
random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples : num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples :]
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
vocab_size = 15000
sequence_length = 20
batch_size = 64
def custom_standardization(input_string):
lowercase = tf.strings.lower(input_string)
return tf.strings.regex_replace(lowercase, "[%s]" % re.escape(strip_chars), "")
eng_vectorization = TextVectorization(
max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length,
)
spa_vectorization = TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
)
train_eng_texts = [pair[0] for pair in train_pairs]
train_spa_texts = [pair[1] for pair in train_pairs]
eng_vectorization.adapt(train_eng_texts)
spa_vectorization.adapt(train_spa_texts)
def format_dataset(eng, spa):
eng = eng_vectorization(eng)
spa = spa_vectorization(spa)
return ({"encoder_inputs": eng, "decoder_inputs": spa[:, :-1],}, spa[:, 1:])
def make_dataset(pairs):
eng_texts, spa_texts = zip(*pairs)
eng_texts = list(eng_texts)
spa_texts = list(spa_texts)
dataset = tf.data.Dataset.from_tensor_slices((eng_texts, spa_texts))
dataset = dataset.batch(batch_size)
dataset = dataset.map(format_dataset)
return dataset.shuffle(2048).prefetch(16).cache()
train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, mask=None):
if mask is not None:
padding_mask = tf.cast(mask[:, tf.newaxis, tf.newaxis, :], dtype="int32")
attention_output = self.attention(
query=inputs, value=inputs, key=inputs, attention_mask=padding_mask
)
proj_input = self.layernorm_1(inputs + attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input + proj_output)
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
super(PositionalEmbedding, self).__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=embed_dim
)
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, latent_dim, num_heads, **kwargs):
super(TransformerDecoder, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.latent_dim = latent_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[layers.Dense(latent_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32")
padding_mask = tf.minimum(padding_mask, causal_mask)
attention_output_1 = self.attention_1(
query=inputs, value=inputs, key=inputs, attention_mask=causal_mask
)
out_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=out_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
out_2 = self.layernorm_2(out_1 + attention_output_2)
proj_output = self.dense_proj(out_2)
return self.layernorm_3(out_2 + proj_output)
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0,
)
return tf.tile(mask, mult)
embed_dim = 256
latent_dim = 2048
num_heads = 8
encoder_inputs = keras.Input(shape=(None,), dtype="int64", name="encoder_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, latent_dim, num_heads)(x)
encoder = keras.Model(encoder_inputs, encoder_outputs)
decoder_inputs = keras.Input(shape=(None,), dtype="int64", name="decoder_inputs")
encoded_seq_inputs = keras.Input(shape=(None, embed_dim), name="decoder_state_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, latent_dim, num_heads)(x, encoded_seq_inputs)
x = layers.Dropout(0.5)(x)
decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)
decoder = keras.Model([decoder_inputs, encoded_seq_inputs], decoder_outputs)
decoder_outputs = decoder([decoder_inputs, encoder_outputs])
transformer = keras.Model(
[encoder_inputs, decoder_inputs], decoder_outputs, name="transformer"
)
epochs = 1 # This should be at least 30 for convergence
transformer.summary()
transformer.compile(
"rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
transformer.fit(train_ds, epochs=epochs, validation_data=val_ds)
如果能帮我克服这个错误,我会非常感激。
谢谢你!
更新1
所以我能够通过确保 num_heads 与 batch_size 相同来克服这个错误。但是我觉得这听起来不太对。所以我想问大家,它们是否总是需要相同?在Keras的例子中,这显然是不同的,那么它在那里是如何工作的呢?
1条答案
按热度按时间dxxyhpgq1#
我遇到了同样的问题,我发现的一个有趣的事情是,我可以在colab中运行代码,但当我刚刚将其复制到本地jupyter笔记本时,我未能运行相同的代码。
另外我认为没有必要保持 num_heads 与 batch_size 相同,因为如果训练数据的大小不是 batch_size 的倍数,则在训练过程中每个批次的大小会发生变化,而 num_heads 是一个常数。这将导致另一个不兼容的形状错误。