在Go中计算形状边框上像素的排序顺序

p1iqtdky  于 2022-12-07  发布在  Go
关注(0)|答案(1)|浏览(111)

我制作了一个小程序,它读取一个PNG文件,并找到图像中任何像素的坐标,这些像素是所描绘形状的 border 的一部分(下面的代码)。
我们在这里定义 “边界的像素部分”“在顶部、底部或其一侧上直接具有白色像素的每个彩色像素”
这个简单的算法找到一个形状的边界,并忽略任何空(白色)像素和任何非空(彩色)像素构成的形状 * 填充 *。
我得到的是一个Point的切片,上面有所有像素的坐标,打印在屏幕上,但它们自然是由找到它们的扫描过程排序的,从上到下,从左到右。
我想要实现的是边界的点被排序,就好像它们在形状周围画了一条连续的线,从遇到的第一个边界像素开始,并在形状周围按顺时针顺序前进。
因此,对于这样一个正方形(抱歉,这是一个非常小的图像):

在10x10像素的网格中,我得到了这个坐标:

2,2
3,2
4,2
5,2
6,2
7,2
2,3
7,3
2,4
7,4
2,5
7,5
2,6
7,6
2,7
3,7
4,7
5,7
6,7
7,7

或者,以图形方式

但我真正想要的是这个(我已经手动排序这些点):

2,2
3,2
4,2
5,2
6,2
7,2
7,3
7,4
7,5
7,6
7,7
6,7
5,7
4,7
3,7
2,7
2,6
2,5
2,4
2,3

或者,在这个小H形的例子中

我得到这个:

2,2
3,2
6,2
7,2
2,3
3,3
6,3
7,3
2,4
4,4
5,4
7,4
2,5
4,5
5,5
7,5
2,6
3,6
6,6
7,6
2,7
3,7
6,7
7,7

但我想要这个(也是手动排序):

2,2
3,2
3,3
4,4
5,4
6,3
6,2
7,2
7,3
7,4
7,5
7,6
7,7
6,7
6,6
5,5
4,5
3,6
3,7
2,7
2,6
2,5
2,4
2,3

我希望我的情况已经很好地说明了。我自己也试图想一个解决办法,但我不知道如何处理这样的问题。如果你有一个直接的解决办法,或想给我指出正确的方向,或阅读一些关于这类问题和它们的解决办法阅读材料,我将非常感谢。
对不起,我的英语不好。
这是我的代码:

package main

import (
    "fmt"
    "image"
    "image/png"
    "io"
    "os"
)

var (
    println = fmt.Println
    printf  = fmt.Printf
)

type Pixel struct {
    R int
    G int
    B int
}

type Point struct {
    X int
    Y int
}

func main() {
    imageFilename := "square1.png"

    image.RegisterFormat("png", "png", png.Decode, png.DecodeConfig)

    file, err := os.Open(imageFilename)
    if err != nil {
        println("Error: File could not be opened")
        os.Exit(1)
    }
    defer file.Close()

    pixels, err := getPixels(file)
    if err != nil {
        println("Error: Image could not be decoded")
        os.Exit(1)
    }

    borders := findBorders(pixels)

    // Sorting the borders points in clockwise order starting from the first encountered point (but how?)
    // borders = sortBorders(borders)

    // Print borders points
    for _, point := range borders {
        printf("%d,%d\n", point.X, point.Y)
    }
}

func findBorders(pixels [][]Pixel) []Point {
    var borders []Point
    for y := 0; y < len(pixels); y++ {
         for x := 0; x < len(pixels[y]); x++ {
              pixel := pixels[y][x]
              if !whitePixel(pixel) {
                  if whitePixel(pixels[y-1][x]) ||
                     whitePixel(pixels[y][x-1]) ||
                     whitePixel(pixels[y+1][x]) ||
                     whitePixel(pixels[y][x+1]) {
                         borders = append(borders, Point{x, y})
                  }
              }
         }
    }
    return borders
}

// Return true if a pixel is white
func whitePixel(pixel Pixel) bool {
     return pixel.R == 255 && pixel.G == 255 && pixel.B == 255
}

// Get the bi-dimensional pixel array
func getPixels(file io.Reader) ([][]Pixel, error) {
    img, _, err := image.Decode(file)

    if err != nil {
        return nil, err
    }

    bounds := img.Bounds()
    width, height := bounds.Max.X, bounds.Max.Y

    var pixels [][]Pixel
    for y := 0; y < height; y++ {
        var row []Pixel
        for x := 0; x < width; x++ {
            row = append(row, rgbaToPixel(img.At(x, y).RGBA()))
        }
        pixels = append(pixels, row)
    }

    return pixels, nil
}

// img.At(x, y).RGBA() returns four uint32 values, we need something a little more comfortable
func rgbaToPixel(r uint32, g uint32, b uint32, a uint32) Pixel {
    return Pixel{int(r / 257), int(g / 257), int(b / 257)}
}

编辑

我已经 * 几乎 * 找到了一个解决方案。对于正方形的例子,如果在{7, 7}{2, 7}角失败,因为,在我看来,当它在垂直或水平邻居之前找到一个对角邻居时,如果它在unsorted切片中首先出现,这个算法认为它足够好,并 * 跳过 * 最近的一个,谁仍然被忽略。请看一看:

func sortBorders(unsorted []Point) []Point {
    original := make([]Point, len(unsorted))
    copy(original, unsorted)
    expected := []Point{{2, 2}, {3, 2}, {4, 2}, {5, 2}, {6, 2}, {7, 2}, {7, 3}, {7, 4}, {7, 5}, {7, 6}, {7, 7}, {6, 7}, {5, 7}, {4, 7}, {3, 7}, {2, 7}, {2, 6}, {2, 5}, {2, 4}, {2, 3}}

    // Finding the first one is easy
    sorted := []Point{unsorted[0]}
    unsorted = unsorted[1:]

    stillUnsorted := func() bool {
        return len(unsorted) > 0
    }

    lastSorted := func() Point {
        return sorted[len(sorted)-1]
    }

    neighbor := func(s, u Point) bool {
        if (s.X == u.X || s.X == u.X+1 || s.X == u.X-1) && (s.Y == u.Y || s.Y == u.Y+1 || s.Y == u.Y-1) {
            return true
        }
        return false
    }

    removeFromUnsorted := func(index int) {
        fresh := unsorted[:index]
        unsorted = append(fresh, unsorted[index+1:]...)
    }

    addToSorted := func(point Point) {
        sorted = append(sorted, point)
    }

    for stillUnsorted() {
        for i, point := range unsorted {
            if neighbor(lastSorted(), point) {
                removeFromUnsorted(i)
                addToSorted(point)

                println("---------")
                println("original:", original)
                println("unsorted:", unsorted)
                println("sorted  :", sorted)
                println("expected:", expected)
                break
            }
        }
    }

    return sorted
}

对于上面的正方形示例,这将生成以下输出:

original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {2 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {2 6} {2 7} {3 7} {4 7} {5 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {2 6} {2 7} {3 7} {4 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7} {5 7}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {2 6} {2 7} {3 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7} {5 7} {4 7}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {2 6} {2 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7} {5 7} {4 7} {3 7}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 5} {2 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7} {5 7} {4 7} {3 7} {2 6}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 4} {2 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7} {5 7} {4 7} {3 7} {2 6} {2 5}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 3} {2 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7} {5 7} {4 7} {3 7} {2 6} {2 5} {2 4}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
---------
original: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {2 3} {7 3} {2 4} {7 4} {2 5} {7 5} {2 6} {7 6} {2 7} {3 7} {4 7} {5 7} {6 7} {7 7}]
unsorted: [{2 7} {7 7}]
sorted  : [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {6 7} {5 7} {4 7} {3 7} {2 6} {2 5} {2 4} {2 3}]
expected: [{2 2} {3 2} {4 2} {5 2} {6 2} {7 2} {7 3} {7 4} {7 5} {7 6} {7 7} {6 7} {5 7} {4 7} {3 7} {2 7} {2 6} {2 5} {2 4} {2 3}]
^Csignal: interrupt

由于unsorted片从未达到空状态,因此执行将永远继续...
我怎样才能使它工作呢?还有,怎样才能在代码中使它更清楚呢?

y1aodyip

y1aodyip1#

我有同样的问题,因为你的。我有一点在互联网上搜索,并没有找到足够的合适的东西,所以我想解释我自己的解决方案,所有的选项,你想要他们都包括在这里,但请注意,起点是不是在我们的控制以这种方式。
首先开始使用开源计算机视觉库它提供了一个名为“cv2.findContours”的python命令(1,2,3)”这是在我最近的作品中使用了这么多,我会解释关于num选项,把在“cv2.findContours”命令。第二件事,必须注意的是,这个命令给你的像素点坐标的边界上的对象,所以我们找到了他们。
选项1是你的图像,下一个是层次选项,当你在多组件形状像沙子工作时使用,因此对于一个单一的选项,我建议放置“cv2.RETR_LIST”,以消除额外的计算和避免复杂性。
链接:https://docs.opencv.org/4.x/d9/d8b/tutorial_py_contours_hierarchy.html
第三个选项非常好,它大大减少了计算量,我喜欢它。对你的问题的解释是,你想“所有”的像素点坐标顺时针排序,而不是他们的“近似”。所以使用“cv2.CHAIN_APPROX_NONE”选项在第三位。要知道为什么我谈论“近似”的重点在下面的链接。
链接:https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html
现在你已经知道如何编写代码了,Python代码类似于下面的代码:

import cv2
Contour, Hierarchy = cv2.findContours(Input_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)

假设我们只处理一个对象,要按顺时针方向对所有点进行排序,请使用以下命令:

Contour[0][::-1]

轮廓[0]是第一个轮廓的所有边界点的列表“逆时针方向”。因为在这种情况下,我们只有一个轮廓,只是使用“轮廓[0][::-1]”来反转它。现在所有像素点按其坐标排序“顺时针方向”,但请记住,我们没有选择自己的起点。要将它们视为列表,请使用命令:

for c in Contour[0]:
   print(c[0])

我们实现了边界点坐标的排序,就好像它们围绕形状画了一条连续的线,从遇到的第一个边界像素开始,围绕形状按顺时针顺序前进。
A Simple Example

相关问题