我创建了下面的代码沙箱,我试图显示一个网格。
https://codesandbox.io/s/template-shader-opcqst?file=/src/App.js
目前,网格显示,但没有动画。我不知道如何使改变'时间'参数的这个网格。它必须与一个很好的使用useMemo,useEffect或useFrame链接。网格的代码是从这个codepen,它是用三个. js编辑,而不是纤维:https://codepen.io/marioecg/pen/mdrvgpq(指向three.js包的链接被cors阻止)
import * as THREE from "https://cdn.skypack.dev/three@0.124.0";
import { OrbitControls } from "https://cdn.skypack.dev/three/examples/jsm/controls/OrbitControls";
import * as dat from "https://cdn.skypack.dev/dat.gui@0.7.7";
const gui = new dat.GUI();
const settings = {
speed: 0.2,
density: 1.5,
strength: 0.2,
frequency: 3.0,
amplitude: 6.0,
intensity: 7.0,
};
const folder1 = gui.addFolder('Noise');
const folder2 = gui.addFolder('Rotation');
const folder3 = gui.addFolder('Color');
folder1.add(settings, 'speed', 0.1, 1, 0.01);
folder1.add(settings, 'density', 0, 10, 0.01);
folder1.add(settings, 'strength', 0, 2, 0.01);
folder2.add(settings, 'frequency', 0, 10, 0.1);
folder2.add(settings, 'amplitude', 0, 10, 0.1);
folder3.add(settings, 'intensity', 0, 10, 0.1);
const noise = `
// GLSL textureless classic 3D noise "cnoise",
// with an RSL-style periodic variant "pnoise".
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-10-11
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise, periodic variant
float pnoise(vec3 P, vec3 rep)
{
vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
`;
const rotation = `
mat3 rotation3dY(float angle) {
float s = sin(angle);
float c = cos(angle);
return mat3(
c, 0.0, -s,
0.0, 1.0, 0.0,
s, 0.0, c
);
}
vec3 rotateY(vec3 v, float angle) {
return rotation3dY(angle) * v;
}
`;
const vertexShader = `
varying vec2 vUv;
varying float vDistort;
uniform float uTime;
uniform float uSpeed;
uniform float uNoiseDensity;
uniform float uNoiseStrength;
uniform float uFrequency;
uniform float uAmplitude;
${noise}
${rotation}
void main() {
vUv = uv;
float t = uTime * uSpeed;
float distortion = pnoise((normal + t) * uNoiseDensity, vec3(10.0)) * uNoiseStrength;
vec3 pos = position + (normal * distortion);
float angle = sin(uv.y * uFrequency + t) * uAmplitude;
pos = rotateY(pos, angle);
vDistort = distortion;
gl_Position = projectionMatrix * modelViewMatrix * vec4(pos, 1.);
}
`;
const fragmentShader = `
varying vec2 vUv;
varying float vDistort;
uniform float uTime;
uniform float uIntensity;
vec3 cosPalette(float t, vec3 a, vec3 b, vec3 c, vec3 d) {
return a + b * cos(6.28318 * (c * t + d));
}
void main() {
float distort = vDistort * uIntensity;
vec3 brightness = vec3(0.5, 0.5, 0.5);
vec3 contrast = vec3(0.5, 0.5, 0.5);
vec3 oscilation = vec3(1.0, 1.0, 1.0);
vec3 phase = vec3(0.0, 0.1, 0.2);
vec3 color = cosPalette(distort, brightness, contrast, oscilation, phase);
gl_FragColor = vec4(color, 1.0);
}
`;
class Scene {
constructor() {
this.renderer = new THREE.WebGLRenderer({ antialias: true });
this.renderer.setPixelRatio(Math.min(window.devicePixelRatio, 1.5));
this.renderer.setSize(window.innerWidth, window.innerHeight);
this.renderer.setClearColor('black', 1);
this.camera = new THREE.PerspectiveCamera(
45,
window.innerWidth / window.innerHeight,
0.1,
1000
);
this.camera.position.set(0, 0, 4);
this.scene = new THREE.Scene();
this.clock = new THREE.Clock();
this.controls = new OrbitControls(this.camera, this.renderer.domElement);
this.init();
this.animate();
}
init() {
this.addCanvas();
this.addElements();
this.addEvents();
}
addCanvas() {
const canvas = this.renderer.domElement;
canvas.classList.add('webgl');
document.body.appendChild(canvas);
}
addElements() {
const geometry = new THREE.IcosahedronBufferGeometry(1, 64);
const material = new THREE.ShaderMaterial({
vertexShader,
fragmentShader,
uniforms: {
uTime: { value: 0 },
uSpeed: { value: settings.speed },
uNoiseDensity: { value: settings.density },
uNoiseStrength: { value: settings.strength },
uFrequency: { value: settings.frequency },
uAmplitude: { value: settings.amplitude },
uIntensity: { value: settings.intensity },
},
// wireframe: true,
});
this.mesh = new THREE.Mesh(geometry, material);
this.scene.add(this.mesh);
}
addEvents() {
window.addEventListener('resize', this.resize.bind(this));
}
resize() {
let width = window.innerWidth;
let height = window.innerHeight;
this.camera.aspect = width / height;
this.renderer.setSize(width, height);
this.camera.updateProjectionMatrix();
}
animate() {
requestAnimationFrame(this.animate.bind(this));
this.render();
}
render() {
this.controls.update();
// Update uniforms
this.mesh.material.uniforms.uTime.value = this.clock.getElapsedTime();
this.mesh.material.uniforms.uSpeed.value = settings.speed;
this.mesh.material.uniforms.uNoiseDensity.value = settings.density;
this.mesh.material.uniforms.uNoiseStrength.value = settings.strength;
this.mesh.material.uniforms.uFrequency.value = settings.frequency;
this.mesh.material.uniforms.uAmplitude.value = settings.amplitude;
this.mesh.material.uniforms.uIntensity.value = settings.intensity;
this.renderer.render(this.scene, this.camera);
}
}
new Scene();
下面是代码应该创建的气泡:https://tympanus.net/Tutorials/WebGLBlobs/index3.html
你会怎么做谢谢。
1条答案
按热度按时间7gcisfzg1#
如果你把
mesh
放到它自己的函数组件中,你就可以使用useFrame
钩子来更新每一帧的均匀性(在这种情况下,你也可以直接把ref
应用到材质上)。这将在不触发场景中的任何重新渲染的情况下更新每帧的统一,如果每次都调用
setState
,则会发生这种情况。