reactjs 我的第一个glsl复杂着色器,如何使它随着时间的推移而演变(与三纤维和React)?

ztyzrc3y  于 2022-12-29  发布在  React
关注(0)|答案(1)|浏览(104)

我创建了下面的代码沙箱,我试图显示一个网格。
https://codesandbox.io/s/template-shader-opcqst?file=/src/App.js
目前,网格显示,但没有动画。我不知道如何使改变'时间'参数的这个网格。它必须与一个很好的使用useMemo,useEffect或useFrame链接。网格的代码是从这个codepen,它是用三个. js编辑,而不是纤维:https://codepen.io/marioecg/pen/mdrvgpq(指向three.js包的链接被cors阻止)

import * as THREE from "https://cdn.skypack.dev/three@0.124.0";
import { OrbitControls } from "https://cdn.skypack.dev/three/examples/jsm/controls/OrbitControls";
import * as dat from "https://cdn.skypack.dev/dat.gui@0.7.7";

const gui = new dat.GUI();

const settings = {
  speed: 0.2,
  density: 1.5,
  strength: 0.2,
  frequency: 3.0,
  amplitude: 6.0,
  intensity: 7.0,
};
const folder1 = gui.addFolder('Noise');
const folder2 = gui.addFolder('Rotation');
const folder3 = gui.addFolder('Color');
folder1.add(settings, 'speed', 0.1, 1, 0.01);
folder1.add(settings, 'density', 0, 10, 0.01);
folder1.add(settings, 'strength', 0, 2, 0.01);
folder2.add(settings, 'frequency', 0, 10, 0.1);
folder2.add(settings, 'amplitude', 0, 10, 0.1);
folder3.add(settings, 'intensity', 0, 10, 0.1);

const noise = `
  // GLSL textureless classic 3D noise "cnoise",
  // with an RSL-style periodic variant "pnoise".
  // Author:  Stefan Gustavson (stefan.gustavson@liu.se)
  // Version: 2011-10-11
  //
  // Many thanks to Ian McEwan of Ashima Arts for the
  // ideas for permutation and gradient selection.
  //
  // Copyright (c) 2011 Stefan Gustavson. All rights reserved.
  // Distributed under the MIT license. See LICENSE file.
  // https://github.com/ashima/webgl-noise
  //

  vec3 mod289(vec3 x)
  {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
  }

  vec4 mod289(vec4 x)
  {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
  }

  vec4 permute(vec4 x)
  {
    return mod289(((x*34.0)+1.0)*x);
  }

  vec4 taylorInvSqrt(vec4 r)
  {
    return 1.79284291400159 - 0.85373472095314 * r;
  }

  vec3 fade(vec3 t) {
    return t*t*t*(t*(t*6.0-15.0)+10.0);
  }

  // Classic Perlin noise, periodic variant
  float pnoise(vec3 P, vec3 rep)
  {
    vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
    vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
    Pi0 = mod289(Pi0);
    Pi1 = mod289(Pi1);
    vec3 Pf0 = fract(P); // Fractional part for interpolation
    vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = Pi0.zzzz;
    vec4 iz1 = Pi1.zzzz;

    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);

    vec4 gx0 = ixy0 * (1.0 / 7.0);
    vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
    gx0 = fract(gx0);
    vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
    vec4 sz0 = step(gz0, vec4(0.0));
    gx0 -= sz0 * (step(0.0, gx0) - 0.5);
    gy0 -= sz0 * (step(0.0, gy0) - 0.5);

    vec4 gx1 = ixy1 * (1.0 / 7.0);
    vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
    gx1 = fract(gx1);
    vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
    vec4 sz1 = step(gz1, vec4(0.0));
    gx1 -= sz1 * (step(0.0, gx1) - 0.5);
    gy1 -= sz1 * (step(0.0, gy1) - 0.5);

    vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
    vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
    vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
    vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
    vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
    vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
    vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
    vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

    vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
    g000 *= norm0.x;
    g010 *= norm0.y;
    g100 *= norm0.z;
    g110 *= norm0.w;
    vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
    g001 *= norm1.x;
    g011 *= norm1.y;
    g101 *= norm1.z;
    g111 *= norm1.w;

    float n000 = dot(g000, Pf0);
    float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
    float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
    float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
    float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
    float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
    float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
    float n111 = dot(g111, Pf1);

    vec3 fade_xyz = fade(Pf0);
    vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
    vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
    float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
    return 2.2 * n_xyz;
  }
`;

const rotation = `
  mat3 rotation3dY(float angle) {
    float s = sin(angle);
    float c = cos(angle);

    return mat3(
      c, 0.0, -s,
      0.0, 1.0, 0.0,
      s, 0.0, c
    );
  }
  
  vec3 rotateY(vec3 v, float angle) {
    return rotation3dY(angle) * v;
  }  
`;

const vertexShader = `  
  varying vec2 vUv;
  varying float vDistort;
  
  uniform float uTime;
  uniform float uSpeed;
  uniform float uNoiseDensity;
  uniform float uNoiseStrength;
  uniform float uFrequency;
  uniform float uAmplitude;
  
  ${noise}
  
  ${rotation}
  
  void main() {
    vUv = uv;
    
    float t = uTime * uSpeed;
    float distortion = pnoise((normal + t) * uNoiseDensity, vec3(10.0)) * uNoiseStrength;

    vec3 pos = position + (normal * distortion);
    float angle = sin(uv.y * uFrequency + t) * uAmplitude;
    pos = rotateY(pos, angle);    
    
    vDistort = distortion;

    gl_Position = projectionMatrix * modelViewMatrix * vec4(pos, 1.);
  }  
`;

const fragmentShader = `
  varying vec2 vUv;
  varying float vDistort;
  
  uniform float uTime;
  uniform float uIntensity;
  
  vec3 cosPalette(float t, vec3 a, vec3 b, vec3 c, vec3 d) {
    return a + b * cos(6.28318 * (c * t + d));
  }     
  
  void main() {
    float distort = vDistort * uIntensity;
    
    vec3 brightness = vec3(0.5, 0.5, 0.5);
    vec3 contrast = vec3(0.5, 0.5, 0.5);
    vec3 oscilation = vec3(1.0, 1.0, 1.0);
    vec3 phase = vec3(0.0, 0.1, 0.2);
  
    vec3 color = cosPalette(distort, brightness, contrast, oscilation, phase);
    
    gl_FragColor = vec4(color, 1.0);
  }  
`;

class Scene {
  constructor() {
    this.renderer = new THREE.WebGLRenderer({ antialias: true });
    this.renderer.setPixelRatio(Math.min(window.devicePixelRatio, 1.5));
    this.renderer.setSize(window.innerWidth, window.innerHeight);
    this.renderer.setClearColor('black', 1);
    
    this.camera = new THREE.PerspectiveCamera(
      45,
      window.innerWidth / window.innerHeight,
      0.1,
      1000
    );
    this.camera.position.set(0, 0, 4);    
    
    this.scene = new THREE.Scene();
    
    this.clock = new THREE.Clock();
    this.controls = new OrbitControls(this.camera, this.renderer.domElement);
    
    this.init();
    this.animate();    
  }
  
  init() {
    this.addCanvas();
    this.addElements();
    this.addEvents();
  } 
  
  addCanvas() {
    const canvas = this.renderer.domElement;
    canvas.classList.add('webgl');
    document.body.appendChild(canvas);
  }  
  
  addElements() {
    const geometry = new THREE.IcosahedronBufferGeometry(1, 64);
    const material = new THREE.ShaderMaterial({
      vertexShader,
      fragmentShader,
      uniforms: {
        uTime: { value: 0 },
        uSpeed: { value: settings.speed },
        uNoiseDensity: { value: settings.density },
        uNoiseStrength: { value: settings.strength },
        uFrequency: { value: settings.frequency },
        uAmplitude: { value: settings.amplitude },
        uIntensity: { value: settings.intensity },
      },
      // wireframe: true,
    });
    this.mesh = new THREE.Mesh(geometry, material);
    this.scene.add(this.mesh);
  }
  
  addEvents() {
    window.addEventListener('resize', this.resize.bind(this));
  }  
  
  resize() {
    let width = window.innerWidth;
    let height = window.innerHeight;

    this.camera.aspect = width / height;
    this.renderer.setSize(width, height);

    this.camera.updateProjectionMatrix();
  }
  
  animate() {
    requestAnimationFrame(this.animate.bind(this));
    this.render();
  }
  
  render() {
    this.controls.update();
    
    // Update uniforms
    this.mesh.material.uniforms.uTime.value = this.clock.getElapsedTime();
    this.mesh.material.uniforms.uSpeed.value = settings.speed;    
    this.mesh.material.uniforms.uNoiseDensity.value = settings.density;
    this.mesh.material.uniforms.uNoiseStrength.value = settings.strength;
    this.mesh.material.uniforms.uFrequency.value = settings.frequency;
    this.mesh.material.uniforms.uAmplitude.value = settings.amplitude;
    this.mesh.material.uniforms.uIntensity.value = settings.intensity;

    this.renderer.render(this.scene, this.camera);
  }  
}

new Scene();

下面是代码应该创建的气泡:https://tympanus.net/Tutorials/WebGLBlobs/index3.html
你会怎么做谢谢。

7gcisfzg

7gcisfzg1#

如果你把mesh放到它自己的函数组件中,你就可以使用useFrame钩子来更新每一帧的均匀性(在这种情况下,你也可以直接把ref应用到材质上)。

function MovingBlob() {
    
    const mesh = useRef()

    useFrame(({ clock }) => {
      if (mesh.current) {
        mesh.current.material.uniforms.uTime.value = clock.elapsedTime;
      }
    })
    
    return (
      <mesh ref={mesh}>
          <icosahedronBufferGeometry attach="geometry" args={[1, 64]} />
          <shaderMaterial attach="material" {...data} />
        </mesh>
    )
  }

这将在不触发场景中的任何重新渲染的情况下更新每帧的统一,如果每次都调用setState,则会发生这种情况。

相关问题