C语言 ADXL375Z冲击阈值误触发

ki1q1bka  于 2023-01-29  发布在  其他
关注(0)|答案(1)|浏览(191)

我正在研究ADXL375,并使用I2C协议将其与Arduino UNO接口。我获得数据手册中提到的X、Y、Z轴值,即水平放置时,x = 0g、y = 0g、z = 1g(近似校准)。我已使能触发模式,并将中断Map到INT2。冲击阈值设置为0x28 = 31.2g。
当我在桌面上点击模块时,即使阈值为31.2g,也会触发中断,但我得到的值不变(大约x = 0,y = 0,z = 1)。如何在冲击过程中获得X,Y,Z的值?当我倾斜模块时,我可以看到值发生相应变化。但这些值几乎不超过3g。我做错了什么?
下面是寄存器的代码设置:

/*START Set Shock Threshold*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x1D); //Shock Duration Register Address
  Wire.write(0x28); //Scale Factor is 780mg/LSB, hence 0x28 = 31.2g
  Wire.endTransmission();
  /*END Set Shock Threshold*/

  /*START Set DUR Thresh_SHOCK*/
  //Used for Double Shock Detection Only**
  Wire.beginTransmission(Device_Address);
  Wire.write(0x21); //Shock Duration Register Address
  Wire.write(0x50); //Scale Factor is 625us/LSB, hence 0x50 = 50ms
  Wire.endTransmission();
  /*END Set DUR Thresh_SHOCK*/

  /*START Set Latency*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x22); //Latent Register Address
  Wire.write(0x20); //Scale Factor is 1.25ms/LSB, hence 0x20 = 400ms
  Wire.endTransmission();
  /*END Set Latency*/

  /*START Set Shock Window to 300ms*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x23); //Window Register Address
  Wire.write(0xF0); //Scale Factor is 1.25ms/LSB, hence 0xF0 = 300ms
  Wire.endTransmission();
  /*END Set Shock Window to 300ms*/

  /*START Enable XYZ-Axis Shock Detection START*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x2A); //SHOCK_AXES Register
  Wire.write(0x07); //Enable SHOCK_X, SHOCK_Y, SHOCK_Z
  Wire.endTransmission();
  /*END Enable XYZ-Axis Shock Detection END*/

  /*START Set Out-Data-Rate(ODR) to 3200Hz*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x2C); //BW_RATE Register Address
  Wire.write(0x0F); //3200 Hz Output Data Rate
  Wire.endTransmission();
  /*END Set Out-Data-Rate(ODR) to 3200Hz */

  /*START Enable Single Shock Interrupt*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x2E); //INT_Enable Register Address
  Wire.write(0x40); //Enable single Shock Int
  Wire.endTransmission();
  /*END Enable Single Shock Interrupt*/
 
  /*START Assign Single Shock Interrupt*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x2F); //INT_Map Register Address
  Wire.write(0x40); //Assign single Shock Int
  Wire.endTransmission();
  /*END Assign Single Shock Interrupt*/  
  
  /*START Data Format*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x31); //DATA_FORMAT Reg
  Wire.write(0x0B); 
  Wire.endTransmission();
  /*END Data Format*/

  /*START Enable Trigger Mode*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x38); //FIFO_CTL Register Address
  Wire.write(0xEA); //Enable Trigger Mode, set samples = 10
  Wire.endTransmission();
  /*END Enable Trigger Mode*/

  /*START Offset Calibration*/
  // Scale Factor = 0.196g/MSB
  Wire.beginTransmission(Device_Address);
  Wire.write(0x1E); //OFSX Address
  Wire.write(0xFA); //OFSX offset 
  Wire.endTransmission();

  Wire.beginTransmission(Device_Address);
  Wire.write(0x1F); //OFSY Address
  Wire.write(0xFB); //OFSY offset
  Wire.endTransmission();

  Wire.beginTransmission(Device_Address);
  Wire.write(0x20); //OFSZ Address
  Wire.write(0xFF); //OFSZ offset
  Wire.endTransmission();
  /*END Offset Calibration*/

  /*Start Enable Measuring*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x2D); //POWER_CTL Register
  Wire.write(0x08); //Enable Measuring
  Wire.endTransmission();
  /*END Enable Measuring*/
  
  /*Attach Interrupt to Digital pin 2*/
  attachInterrupt(digitalPinToInterrupt(2), ISR_Func, RISING);

下面是我接收这些值的方式:

int16_t data_x = 0, data_x_lsb = 0; 
int16_t data_y = 0, data_y_lsb = 0; 
int16_t data_z = 0, data_z_lsb = 0;

Wire.beginTransmission(Device_Address);
Wire.write(0x32); //read LSB
Wire.endTransmission();

Wire.requestFrom(Device_Address, 6);   
while (Wire.available()) {
   data_x_lsb = Wire.read();
   data_x = Wire.read();
   data_y_lsb = Wire.read();
   data_y = Wire.read();
   data_z_lsb = Wire.read();
   data_z = Wire.read();

    data_x = (data_x << 8) | (data_x_lsb);
    data_y = (data_y << 8) | (data_y_lsb);
    data_z = (data_z << 8) | (data_z_lsb);
}

data_x = (double)data_x*49/1000
data_y = (double)data_y*49/1000
data_z = (double)data_z*49/1000

样本输出:

14:36:51.120 -> -0.072  -0.067  0.977
14:36:51.221 -> -0.087  -0.096  0.949
14:36:51.325 -> 0.010   -0.191  0.988
14:36:51.427 -> -0.062  -0.162  1.071
14:36:51.536 -> -0.010  -0.088  1.071
14:36:51.614 -> -0.015  -0.037  1.052
14:36:51.725 -> -0.022  -0.047  1.044
14:36:51.837 -> 0.062   -0.043  1.012
14:36:52.025 -> FIFO STATUS REG: A0
14:36:52.025 -> Shock Occured
14:36:52.062 -> ACT STATUS SHOCK REG: 1
14:36:52.062 -> INT_SOURCE: C3
14:36:52.137 -> 0.055   -0.081  0.997
14:36:52.252 -> 0.024   0.031   1.033
14:36:52.354 -> 0.011   -0.072  1.079
14:36:52.455 -> 0.022   -0.031  0.973
14:36:52.547 -> 0.014   -0.042  1.041
14:36:52.654 -> -0.062  -0.036  1.018
14:36:52.770 -> -0.080  -0.003  1.003
14:36:52.880 -> -0.081  -0.118  1.084
14:36:52.972 -> -0.080  -0.039  1.046
14:36:53.079 -> -0.109  -0.016  0

根据数据表,它说我们需要在每个触发事件后重置触发模式。我试过这样做,但无济于事。
我正在使用I2C进行多字节读取,并实现了跨度为4的移动平均滤波器。

tp5buhyn

tp5buhyn1#

更新:我能够得到输出值。我所要做的就是在初始设置中进入旁路模式来重置触发模式。并在每次冲击事件后再次重置。
这是我在设置中添加的代码部分,并在每次冲击事件后调用。

/*START Disable Trigger Mode/enable Bypass Mode*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x38); //FIFO_CTL Register Address
  Wire.write(0x2A); //Disable Trigger Mode, set samples = 10
  Wire.endTransmission();
  /*END Disable Trigger Mode/enable Bypass Mode*/

  /*START Enable Trigger Mode*/
  Wire.beginTransmission(Device_Address);
  Wire.write(0x38); //FIFO_CTL Register Address
  Wire.write(0xEA); //Enable Trigger Mode, set samples = 10
  Wire.endTransmission();
  /*END Enable Trigger Mode*/

至于即使在冲击后仍保持恒定的值,我在仅阅读输出FIFO [0]后重置触发模式,此时有10个FIFO要收集数据,正如我在寄存器0x38中配置的那样(样本= 10)。因此,冲击值存储在FIFO的后级,而不是FIFO [0]。在冲击事件后阅读FIFO超过10次,然后重置触发模式解决了问题。
样品输出(X Y Z,单位g):

0.000   0.000   0.196
-0.490  0.098   0.000
0.098   -0.392  0.980
Shock Occured
FIFO STATUS REG: A0
ACT STATUS SHOCK REG: 1
INT_SOURCE: C3
0.490   -0.098  2.156
0.490   -0.098  2.156
0.392   0.098   1.960
0.392   0.294   2.254
0.294   0.098   1.960
-0.784  -0.882  1.470
-0.686  -0.980  1.274
10.976  13.524  59.290
27.342  17.934  36.358
-13.034 -6.566  -1.666
-0.098  0.098   1.078
0.000   0.294   0.686
0.098   0.098   1.470

相关问题