unix 麻省理工学院开放式课程作业1

o4hqfura  于 2023-03-02  发布在  Unix
关注(0)|答案(2)|浏览(153)

我目前正在做麻省理工学院的开放课件操作系统课程(https://ocw.mit.edu/courses/6-828-operating-system-engineering-fall-2012/),我正在努力完成第一门课的作业,那就是实现你自己的小shell。
我的代码如下:

#include <stdlib.h>
    #include <unistd.h>
    #include <stdio.h>
    #include <fcntl.h>
    #include <string.h>
    #include <assert.h>
    #include <sys/types.h>
    #include <sys/stat.h>
    #include <sys/wait.h>
    #include <stdint.h>
    // Simplifed xv6 shell.
    
    #define MAXARGS 10
    
    // All commands have at least a type. Have looked at the type, the code
    // typically casts the *cmd to some specific cmd type.
    struct cmd {
      int type;          //  ' ' (exec), | (pipe), '<' or '>' for redirection
    };
    
    struct execcmd {
      int type;              // ' '
      char *argv[MAXARGS];   // arguments to the command to be exec-ed
    };
    
    struct redircmd {
      int type;          // < or > 
      struct cmd *cmd;   // the command to be run (e.g., an execcmd)
      char *file;        // the input/output file
      int mode;          // the mode to open the file with
      int fd;            // the file descriptor number to use for the file
    };
    
    struct pipecmd {
      int type;          // |
      struct cmd *left;  // left side of pipe
      struct cmd *right; // right side of pipe
    };
    
    int fork1(void);  // Fork but exits on failure.
    struct cmd *parsecmd(char*);
    
    // Execute cmd.  Never returns.
    void
    runcmd(struct cmd *cmd)
    {
      int p[2], r;
      struct execcmd *ecmd;
      struct pipecmd *pcmd;
      struct redircmd *rcmd;
    
      if(cmd == 0)
        exit(0);
      
      switch(cmd->type){
      default:
        fprintf(stderr, "unknown runcmd\n");
        exit(-1);
    
      case ' ':
        ecmd = (struct execcmd*)cmd;
        if(ecmd->argv[0] == 0)
          exit(0);
    
          if (strcmp(ecmd->argv[0], "ls") == 0) {
          execvp("ls", ecmd->argv);
          fprintf(stderr, "execvp ls failed\n");
          }
          if (strcmp(ecmd->argv[0], "echo") == 0) {
          perror("This is from echo:\n");
          execvp("echo", ecmd->argv);
          fprintf(stderr, "execvp failed\n");
          }
          if (strcmp(ecmd->argv[0], "grep") == 0) {
          //perror("This is from grep:\n");
          execvp("grep", ecmd->argv);
          fprintf(stderr, "execvp failed\n");
          }
          if (strcmp(ecmd->argv[0], "cat") == 0) {
          //perror("This is from grep:\n");
          execvp("cat", ecmd->argv);
          fprintf(stderr, "execvp failed\n");
          }
        break;
    
      case '>':
      case '<':
        rcmd = (struct redircmd*)cmd;
        fprintf(stderr, "redir not implemented\n");
        // Your code here ...
        runcmd(rcmd->cmd);
        break;
    
   case '|':
         pcmd = (struct pipecmd*)cmd;
            struct execcmd *left = (struct execcmd*)pcmd->left;
           struct execcmd *right = (struct execcmd*)pcmd->right;

            int i;
            int pd[2];
            pipe(pd);
            int pid1 = fork1();
            int pid2 = fork1();
            if(!pid1) {
                //  close(STDOUT_FILENO);
                //  close(pd[0]);
               execvp(left->argv[0], left->argv);
                dup2(pd[1], 1);
                exit(0);
            }

            if(!pid2) {
                //  close(STDIN_FILENO);
               //  close(pd[1]);
                dup2(pd[0], 0);
                execvp(right->argv[0], right->argv);
                exit(0);
            }
             if(pid1 > 0) {
                int status2;
                int status;
                if(waitpid(pid1, &status, 0) == -1){
                    perror("waitpid1");
                }
                if(waitpid(pid2, &status2, 0) == -1) {
                    perror("waitpid2");
                };
                //  close(pd[0]);
                //  close(pd[1]);
            }

break; 
       }  
    }
    
    int
    getcmd(char *buf, int nbuf)
    {
      
      if (isatty(fileno(stdin)))
        fprintf(stdout, "$ ");
      memset(buf, 0, nbuf);
      fgets(buf, nbuf, stdin);
      if(buf[0] == 0) // EOF
        return -1;
      return 0;
    }
    
    int
    main(void)
    {
      static char buf[100];
      int fd, r;
    
      // Read and run input commands.
      while(getcmd(buf, sizeof(buf)) >= 0){
        if(buf[0] == 'c' && buf[1] == 'd' && buf[2] == ' '){
          // Clumsy but will have to do for now.
          // Chdir has no effect on the parent if run in the child.
          buf[strlen(buf)-1] = 0;  // chop \n
          if(chdir(buf+3) < 0)
            fprintf(stderr, "cannot cd %s\n", buf+3);
          continue;
        }
        if(fork1() == 0)
          runcmd(parsecmd(buf));
        wait(&r);
      }
      exit(0);
    }
    
    int
    fork1(void)
    {
      int pid;
      
      pid = fork();
      if(pid == -1)
        perror("fork");
      return pid;
    }
    
    struct cmd*
    execcmd(void)
    {
      struct execcmd *cmd;
    
      cmd = malloc(sizeof(*cmd));
      memset(cmd, 0, sizeof(*cmd));
      cmd->type = ' ';
      return (struct cmd*)cmd;
    }
    
    struct cmd*
    redircmd(struct cmd *subcmd, char *file, int type)
    {
      struct redircmd *cmd;
    
      cmd = malloc(sizeof(*cmd));
      memset(cmd, 0, sizeof(*cmd));
      cmd->type = type;
      cmd->cmd = subcmd;
      cmd->file = file;
      cmd->mode = (type == '<') ?  O_RDONLY : O_WRONLY|O_CREAT|O_TRUNC;
      cmd->fd = (type == '<') ? 0 : 1;
      return (struct cmd*)cmd;
    }
    
    struct cmd*
    pipecmd(struct cmd *left, struct cmd *right)
    {
      struct pipecmd *cmd;
    
      cmd = malloc(sizeof(*cmd));
      memset(cmd, 0, sizeof(*cmd));
      cmd->type = '|';
      cmd->left = left;
      cmd->right = right;
      return (struct cmd*)cmd;
    }
    
    // Parsing
    
    char whitespace[] = " \t\r\n\v";
    char symbols[] = "<|>";
    
    int
    gettoken(char **ps, char *es, char **q, char **eq)
    {
      char *s;
      int ret;
      
      s = *ps;
      while(s < es && strchr(whitespace, *s))
        s++;
      if(q)
        *q = s;
      ret = *s;
      switch(*s){
      case 0:
        break;
      case '|':
      case '<':
        s++;
        break;
      case '>':
        s++;
        break;
      default:
        ret = 'a';
        while(s < es && !strchr(whitespace, *s) && !strchr(symbols, *s))
          s++;
        break;
      }
      if(eq)
        *eq = s;
      
      while(s < es && strchr(whitespace, *s))
        s++;
      *ps = s;
      return ret;
    }
    
    int
    peek(char **ps, char *es, char *toks)
    {
      char *s;
      
      s = *ps;
      while(s < es && strchr(whitespace, *s))
        s++;
      *ps = s;
      return *s && strchr(toks, *s);
    }
    
    struct cmd *parseline(char**, char*);
    struct cmd *parsepipe(char**, char*);
    struct cmd *parseexec(char**, char*);
    
    // make a copy of the characters in the input buffer, starting from s through es.
    // null-terminate the copy to make it a string.
    char 
    *mkcopy(char *s, char *es)
    {
      int n = es - s;
      char *c = malloc(n+1);
      assert(c);
      strncpy(c, s, n);
      c[n] = 0;
      return c;
    }
    
    struct cmd*
    parsecmd(char *s)
    {
      char *es;
      struct cmd *cmd;
    
      es = s + strlen(s);
      cmd = parseline(&s, es);
      peek(&s, es, "");
      if(s != es){
        fprintf(stderr, "leftovers: %s\n", s);
        exit(-1);
      }
      return cmd;
    }
    
    struct cmd*
    parseline(char **ps, char *es)
    {
      struct cmd *cmd;
      cmd = parsepipe(ps, es);
      return cmd;
    }
    
    struct cmd*
    parsepipe(char **ps, char *es)
    {
      struct cmd *cmd;
    
      cmd = parseexec(ps, es);
      if(peek(ps, es, "|")){
        gettoken(ps, es, 0, 0);
        cmd = pipecmd(cmd, parsepipe(ps, es));
      }
      return cmd;
    }
    
    struct cmd*
    parseredirs(struct cmd *cmd, char **ps, char *es)
    {
      int tok;
      char *q, *eq;
    
      while(peek(ps, es, "<>")){
        tok = gettoken(ps, es, 0, 0);
        if(gettoken(ps, es, &q, &eq) != 'a') {
          fprintf(stderr, "missing file for redirection\n");
          exit(-1);
        }
        switch(tok){
        case '<':
          cmd = redircmd(cmd, mkcopy(q, eq), '<');
          break;
        case '>':
          cmd = redircmd(cmd, mkcopy(q, eq), '>');
          break;
        }
      }
      return cmd;
    }
    
    struct cmd*
    parseexec(char **ps, char *es)
    {
      char *q, *eq;
      int tok, argc;
      struct execcmd *cmd;
      struct cmd *ret;
      
      ret = execcmd();
      cmd = (struct execcmd*)ret;
    
      argc = 0;
      ret = parseredirs(ret, ps, es);
      while(!peek(ps, es, "|")){
        if((tok=gettoken(ps, es, &q, &eq)) == 0)
          break;
        if(tok != 'a') {
          fprintf(stderr, "syntax error\n");
          exit(-1);
        }
        cmd->argv[argc] = mkcopy(q, eq);
        argc++;
        if(argc >= MAXARGS) {
          fprintf(stderr, "too many args\n");
          exit(-1);
        }
        ret = parseredirs(ret, ps, es);
      }
      cmd->argv[argc] = 0;
      return ret;
    }

我正在努力解决的部分是管道实现:

case '|':
         pcmd = (struct pipecmd*)cmd;
            struct execcmd *left = (struct execcmd*)pcmd->left;
           struct execcmd *right = (struct execcmd*)pcmd->right;

            int i;
            int pd[2];
            pipe(pd);
            int pid1 = fork1();
            int pid2 = fork1();
            if(!pid1) {
                //  close(STDOUT_FILENO);
                //  close(pd[0]);
               execvp(left->argv[0], left->argv);
                dup2(pd[1], 1);
                exit(0);
            }

            if(!pid2) {
                //  close(STDIN_FILENO);
               //  close(pd[1]);
                dup2(pd[0], 0);
                execvp(right->argv[0], right->argv);
                exit(0);
            }
             if(pid1 > 0) {
                int status2;
                int status;
                if(waitpid(pid1, &status, 0) == -1){
                    perror("waitpid1");
                }
                if(waitpid(pid2, &status2, 0) == -1) {
                    perror("waitpid2");
                };
                //  close(pd[0]);
                //  close(pd[1]);
            }

break;

我正在尝试执行echo "hahaha" | grep "h",但没有得到任何输出。echo和grep都是独立工作的。
我检查了left->argv[0]right->argv[0]是否工作正常。
有人知道发生了什么吗?
PS:我的实现只是为了让你可以执行一个管道。我意识到如果我想让它可以执行2个以上的管道命令,我需要一个循环

8mmmxcuj

8mmmxcuj1#

下面是对代码的一点修改,主要问题是:

  • dup2()在execvp之后使用,应该在之前完成。
  • fork1()用于"pid2"的早期,导致许多fork。
  • 父项应始终关闭pd []
  • 儿童应关闭未使用的pd []部分。
  • 提供给execvp的命令参数按原样[根据您的测试]。

要测试您的代码和下面的代码,您不应该在grep命令参数中使用引号。(这是一个单独的解析问题/挑战)
测试:
$echo哈哈哈哈|格雷普阿
重写:

case '|':
         pcmd = (struct pipecmd*)cmd;
         struct execcmd *left = (struct execcmd*)pcmd->left;
         struct execcmd *right = (struct execcmd*)pcmd->right;

          int i;
          int pd[2];
          pipe(pd);
          int pid1 = fork1();
          if(!pid1) {
              //  close(STDOUT_FILENO);
              close(pd[0]);
              dup2(pd[1], 1);
             execvp(left->argv[0], left->argv);
              exit(0);
          }

          int pid2 = fork1();
          if(!pid2) {
              //  close(STDIN_FILENO);
              close(pd[1]);
              dup2(pd[0], 0);
              execvp(right->argv[0], right->argv);
              exit(0);
          }
          close(pd[0]);
          close(pd[1]);

          int status2;
          int status;
          if(waitpid(pid1, &status, 0) == -1){
               perror("waitpid1");
          }
          if(waitpid(pid2, &status2, 0) == -1) {
               perror("waitpid2");
          };
break;

祝你好运

kb5ga3dv

kb5ga3dv2#

我只是在这里猜测,但我认为你的问题是一个僵局。
在原始代码和更新后的代码中,您都可以调用

waitpid(pid, &status, 0);

这将使当前进程停止并等待由pid标识的进程完成。* 但是 * 如果该进程没有完成,则waitpid将永远不会返回!
例如,如果管道的第一部分填满了管道的写缓冲区,就会发生这种情况,这将导致所有对管道的写操作都被阻塞,进程将无法继续。由于没有人从管道的另一端阅读,这就是会发生的情况。
您需要等待 parent 进程中的两个子进程。这两个子进程本质上应该做相同的事情:
1.设置标准输出/输入(dup2调用)
1.运行程序(exec调用)
在这方面不需要再做什么,尤其是不需要做任何会无限期拖延或阻碍这一进程的事情。
父进程需要执行以下操作:
1.启动第一个子进程
1.启动第二个子进程
1.等待两个进程结束
记住顺序是非常重要的,如果你在第1步和第2步之间等待第一个子进程,那么你又会遇到死锁。

相关问题