scipy 矩阵线性组合系数

enxuqcxy  于 2023-05-07  发布在  其他
关注(0)|答案(1)|浏览(126)

我们有四个矩阵A、B、C、D,它们的维数相同(m * n * p)。我们需要找到系数x1,x2,x3,使得我们:

minimize (D - x1 * A - x2 * B - x3 * C)**2

假设x1 + x2 + x3 = 1

0<= x1,x2,x3 <=1

在Python中有没有什么有效的方法来最小化这个的平方和?

jaxagkaj

jaxagkaj1#

如果你想要真正的平方和最小化,在Scipy中使用线性约束是可能的:

import numpy as np
from numpy.random import default_rng
from scipy.optimize import minimize, LinearConstraint

rand = default_rng(seed=0)
D = rand.random(size=(5, 7, 6))
ABC = rand.random(size=(3, *D.shape))

def objective(x: np.ndarray) -> float:
    delta = (
        D - x[:, np.newaxis, np.newaxis, np.newaxis] * ABC
    ).ravel()
    return delta.dot(delta)

result = minimize(
    fun=objective,
    x0=[1/3, 1/3, 1/3],
    bounds=[[0,1], [0,1], [0,1]],
    constraints=LinearConstraint(A=[1, 1, 1], lb=1, ub=1),
)
print(result)
message: Optimization terminated successfully
 success: True
  status: 0
     fun: 146.34193150290096
       x: [ 3.660e-01  3.163e-01  3.177e-01]
     nit: 4
     jac: [-6.803e+01 -6.803e+01 -6.803e+01]
    nfev: 20
    njev: 4

另一种结果不是更快,并且不会具有相同的数值特征的方法是,如果您将其更改为最小绝对误差并使用线性规划:

import numpy as np
from numpy.random import default_rng
from scipy.optimize import linprog

rand = default_rng(seed=0)
m, n, p, q = 5, 7, 6, 3
mnp = m*n*p
D = rand.random(size=(m, n, p))
ABC = rand.random(size=(m, n, p, q))

# x, and objective auxiliaries for each element of D
c = np.ones(shape=q + mnp)
c[:q] = 0  # x is not minimized, objectives are

bounds = np.zeros((q + mnp, 2))
bounds[:q, 1] = 1        # 0 <= x <= 1
bounds[q:, 1] = np.inf   # 0 <= o

A_eq = np.zeros((1, q + mnp))
A_eq[0, :q] = 1  # sum(x) == 1

# For each element of D and its corresponding objective o:
# -D + x.abc <= o     A  B  C -1 0 0 0 0 ... <=  D
#  D - x.abc <= o    -A -B -C -1 0 0 0 0 ... <= -D
A_ub = np.block([
    [+ABC.reshape((-1, q)), -np.eye(mnp)],
    [-ABC.reshape((-1, q)), -np.eye(mnp)],
])
b_ub = np.concatenate((+D.ravel(), -D.ravel()))

result = linprog(
    c=c, bounds=bounds,
    A_eq=A_eq, b_eq=[1],
    A_ub=A_ub, b_ub=b_ub)
x = result.x[:q]
obj = result.x[q:]
print(result)
print('x =', x)

# Verification
assert result.success
assert np.isclose(1, x.sum())
assert np.all(0 <= x)
assert np.all(x <= 1)

delta = np.abs(
    D - (
        x[np.newaxis, np.newaxis, np.newaxis, :]*ABC
    ).sum(axis=-1)
).ravel()
assert np.allclose(delta, obj)
message: Optimization terminated successfully. (HiGHS Status 7: Optimal)
        success: True
         status: 0
            fun: 58.41554582615268
              x: [ 1.614e-01  5.168e-01 ...  6.642e-02  3.075e-01]
            nit: 212
          lower:  residual: [ 1.614e-01  5.168e-01 ...  6.642e-02
                              3.075e-01]
                 marginals: [ 0.000e+00  0.000e+00 ...  0.000e+00
                              0.000e+00]
          upper:  residual: [ 8.386e-01  4.832e-01 ...        inf
                                    inf]
                 marginals: [ 0.000e+00  0.000e+00 ...  0.000e+00
                              0.000e+00]
          eqlin:  residual: [ 0.000e+00]
                 marginals: [ 1.100e+00]
        ineqlin:  residual: [ 7.751e-01  0.000e+00 ...  0.000e+00
                              0.000e+00]
                 marginals: [-0.000e+00 -1.000e+00 ... -1.000e+00
                             -1.000e+00]
 mip_node_count: 0
 mip_dual_bound: 0.0
        mip_gap: 0.0
x = [0.16136498 0.51681836 0.32181666]

线性程序在15毫秒内运行,而一般最小化为1.5毫秒。
你问:
如果我们把它改成绝对误差最小值&使用线性规划,什么样的特性会不同呢?
例如,参见Why does regression use least "squares" instead of least "absolute values"?。权衡是不平凡的。

相关问题