matplotlib 什么函数最适合我从星系得到的数据?

flvlnr44  于 2023-06-23  发布在  其他
关注(0)|答案(1)|浏览(99)

我有以下一组数据:

surface_brightnesses_o2 = [12076.0616666451, 11850.730704516911, 10265.598145816548, 9120.859898168235, 7070.26133100111, 5636.138833975608, 3968.1608109082404, 2923.2839406153525, 1963.9315683870766, 1417.3534005331746, 953.9023540784231, 705.6331341427699, 494.19332394388607, 368.6833467905476, 266.41823769096874, 209.98748543636287, 162.17577134818487, 125.70474388251918, 99.72308185010249, 77.89696236284223, 53.44842864009773, 44.01192443651109, 35.52192383706094, 28.055033719366026]

surface_brightnesses_o3 = [24172.942124480545, 23257.99074788583, 19560.86193185194, 16867.86523112749, 12362.182457744273, 9447.974865736134, 6155.667579526176, 4233.309154367383, 2589.6992946467008, 1744.3756532539348, 1096.6861498588305, 768.600975237508, 512.7340397075068, 378.58271663510016, 268.4441550825379, 206.52758729119557, 155.45645416835472, 124.71693391104529, 97.34230151849876, 79.90134896492059, 63.519334039447266, 52.12382464229779, 41.91733978896593, 37.68365343589249, 31.54091147651983, 25.80764998552268, 22.808177293717083, 20.4718551088832, 16.05156984850126, 15.497358990115051, 15.42389243808505, 13.54177847744223]

radii_o2 = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0]

radii_o3 = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14, 14.5, 15, 15.5, 16]

surface_brightnesses_error_o2 = 
[109.89113552  85.30012943  80.8548183   76.55283021  66.49162753
  58.35388488  49.4425817   43.48019603  36.48439283  32.13758154
  28.57971998  26.30618542  24.27602806  23.10048171  22.01106869
  21.3172123   20.77203895  20.41962288  20.12573286  19.8928839
  19.84192745  19.80754151  19.6515864   19.60323267]
  
  surface_brightnesses_error_o3 = 
  [155.47650023  84.28555314  74.17986129  66.93258861  54.67881726
  46.5099896   36.86637245  30.71396278  25.45559327  22.40018842
  19.83606727  18.43327984  16.94700871  16.13059484  15.55795461
  15.155422    14.7707935   14.59604581  14.30144021  14.13502224
  14.04555569  13.9530354   14.01473729  14.13623735  14.16959504
  14.1342218   13.9836842   13.87870645  13.88701116  13.91734777
  13.96048525  13.98621865]

我试图绘制一个拟合图,使yscale(表面亮度)为log,xscale(半径)为线性。我还想将O2和O3的误差合并到相应的O2和O3的表面亮度图中。
我不想记录表面亮度值,我只想按原样绘制数据,并将yscale设置为log。但是,我找不到一个函数,可以正确地拟合数据。
我将感谢一些输入什么将是一个很好的适合在这里,以及如何编码它。
我试着拟合一个Sersic函数,这是一个用于研究星系表面亮度分布的亮度分布函数。

fig, ax = plt.subplots(figsize=(10, 7))

# Define Sersic function
def sersic(r, I_e, R_e, n):
    b_n = 1.9992*n - 0.3271  
    return I_e * np.exp(-b_n * ((r/R_e)**(1/n) - 1))

# Fit the model to the O2 data
popt_o2, pcov_o2 = curve_fit(sersic, radii_o2, surface_brightnesses_o2, sigma=surface_brightnesses_error_o2, p0=[100000, 16, 2])

# Fit the model to the O3 data
popt_o3, pcov_o3 = curve_fit(sersic, radii_o3, surface_brightnesses_o3, sigma=surface_brightnesses_error_o3, p0=[10000, 16, 2])

# O2 data with error bars and fitted line
plt.errorbar(radii_o2, surface_brightnesses_o2, yerr=surface_brightnesses_error_o2, fmt='o', label='O2 data', capsize=4)
plt.plot(radii_o2, sersic(radii_o2, *popt_o2), 'r-', label='O2 fit: I_e=%5.3f, R_e=%5.3f, n=%5.3f' % tuple(popt_o2), color = 'blue')

# O3 data with error bars and fitted line
plt.errorbar(radii_o3, surface_brightnesses_o3, yerr=surface_brightnesses_error_o3, fmt='o', label='O3 data', capsize=4)
plt.plot(radii_o3, sersic(radii_o3, *popt_o3), 'b-', label='O3 fit: I_e=%5.3f, R_e=%5.3f, n=%5.3f' % tuple(popt_o3), color = 'red')

plt.xlabel('Radii')
plt.ylabel('Surface Brightness')
plt.yscale('log')
plt.ylim(1, 30000)  # Adjust the y-axis limits here
plt.title('Sersic Fit to Surface Brightness vs Radii for O2 and O3')
plt.legend()

plt.show()

然后我尝试拟合对数高斯图:

# Define the log-Gaussian function to fit to the data
def log_gaussian(x, amp, cen, wid):
    return amp * np.exp(-(np.log(x) - cen)**2 / wid**2)

# Initial guess for parameters (necessary for log-Gaussian)
popt_o2, pcov_o2 = curve_fit(power_law, radii_o2, surface_brightnesses_o2)
popt_o3, pcov_o3 = curve_fit(power_law, radii_o3, surface_brightnesses_o3

# Fit the log-Gaussian model to the data
params_o2, _ = curve_fit(log_gaussian, radii_o2, surface_brightnesses_o2, p0_o2)
params_o3, _ = curve_fit(log_gaussian, radii_o3, surface_brightnesses_o3, p0_o3)

# Generate points for the fitted log-Gaussian function
fit_o2 = power_law(radii_smooth_o2, *popt_o2)
fit_o3 = power_law(radii_smooth_o3, *popt_o3)

# Create the plot
plt.figure(figsize=(10, 6))

# Plot the original data
plt.errorbar(radii_o2, surface_brightnesses_o2, yerr=surface_brightnesses_error_o2, fmt='o', label='Data O2', capsize=4)
plt.errorbar(radii_o3, surface_brightnesses_o3, yerr=surface_brightnesses_error_o3, fmt='o', label='Data O3', capsize=4)

# Plot the fitted log-Gaussian function
plt.plot(radii_fit, fit_o2, label='Fit O2', color = 'blue')
plt.plot(radii_fit, fit_o3, label='Fit O3', color = 'red')

# Decorate the plot and set yscale to log
plt.xlabel('Radii')
plt.ylabel('Surface Brightnesses')
plt.title('Surface Brightnesses vs Radii')

plt.legend()
plt.yscale('log')

# Show the plot
plt.show()

yyhrrdl8

yyhrrdl81#

使用不同的模型,然后执行对数拟合。你已经在x上应用了你的log,而我认为你应该在fit期间在y上应用它。
有无数的模型可供选择;哪些是科学上有效的由你来决定一个有一个松散合理的拟合是一个广义高斯与线性衰减项;还有其他人

import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit

surface_brightnesses_o2 = np.array([
    12076.0616666451, 11850.730704516911, 10265.598145816548, 9120.859898168235, 7070.26133100111,
    5636.138833975608, 3968.1608109082404, 2923.2839406153525, 1963.9315683870766, 1417.3534005331746,
    953.9023540784231, 705.6331341427699, 494.19332394388607, 368.6833467905476, 266.41823769096874,
    209.98748543636287, 162.17577134818487, 125.70474388251918, 99.72308185010249, 77.89696236284223,
    53.44842864009773, 44.01192443651109, 35.52192383706094, 28.055033719366026
])

surface_brightnesses_o3 = np.array([
    24172.942124480545, 23257.99074788583, 19560.86193185194, 16867.86523112749, 12362.182457744273,
    9447.974865736134, 6155.667579526176, 4233.309154367383, 2589.6992946467008, 1744.3756532539348,
    1096.6861498588305, 768.600975237508, 512.7340397075068, 378.58271663510016, 268.4441550825379,
    206.52758729119557, 155.45645416835472, 124.71693391104529, 97.34230151849876, 79.90134896492059,
    63.519334039447266, 52.12382464229779, 41.91733978896593, 37.68365343589249, 31.54091147651983,
    25.80764998552268, 22.808177293717083, 20.4718551088832, 16.05156984850126, 15.497358990115051,
    15.42389243808505, 13.54177847744223
])

radii_o2 = np.array([
    0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5,
    10.0, 10.5, 11.0, 11.5, 12.0
])

radii_o3 = np.array([
    0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5,
    10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14, 14.5, 15, 15.5, 16
])

surface_brightnesses_error_o2 = [
    109.89113552,  85.30012943,  80.85481830,  76.55283021,  66.49162753,
    58.353884880,  49.44258170,  43.48019603,  36.48439283,  32.13758154,
    28.579719980,  26.30618542,  24.27602806,  23.10048171,  22.01106869,
    21.317212300,  20.77203895,  20.41962288,  20.12573286,  19.89288390,
    19.841927450,  19.80754151,  19.65158640,  19.60323267]

surface_brightnesses_error_o3 = [
    155.47650023, 84.28555314, 74.17986129, 66.93258861, 54.67881726,
     46.50998960, 36.86637245, 30.71396278, 25.45559327, 22.40018842,
     19.83606727, 18.43327984, 16.94700871, 16.13059484, 15.55795461,
     15.15542200, 14.77079350, 14.59604581, 14.30144021, 14.13502224,
     14.04555569, 13.95303540, 14.01473729, 14.13623735, 14.16959504,
     14.13422180, 13.98368420, 13.87870645, 13.88701116, 13.91734777,
     13.96048525, 13.98621865]

def gaussian(x: np.ndarray, amp: float, cen: float, wid: float, pow: float, slope: float, off: float) -> np.ndarray:
    return amp * np.exp(-np.abs((x - cen)/wid)**pow) + slope*x + off

def log_gaussian(x: np.ndarray, *params: float) -> np.ndarray:
    return np.log(gaussian(x, *params))

ax: plt.Axes
fig, ax = plt.subplots()

for title, brightness, radii, error, guess in (
    (
        'O2', surface_brightnesses_o2, radii_o2, surface_brightnesses_error_o2,
        (1e4, 0, 1, 2, 0, 0),
    ),
    (
        'O3', surface_brightnesses_o3, radii_o3, surface_brightnesses_error_o3,
        (1e4, 0, 1, 2, 0, 0),
    ),
):
    ax.errorbar(radii, brightness, yerr=error, fmt='o', capsize=4, label=f'{title} data')
    # ax.plot(radii, gaussian(radii, *guess), label=f'{title} guess')
    fit, _ = curve_fit(
        f=log_gaussian, xdata=radii, ydata=np.log(brightness), p0=guess,
        bounds=(
            (  1, -20,  0.01,  0.5, -1e6, -1e6),
            (1e9,  20, 10.00, 10.0,  1e6,  1e6),
        ),
    )
    print(fit)
    plot_radii = np.linspace(start=fit[1], stop=max(radii_o2.max(), radii_o3.max()), num=200)
    ax.plot(plot_radii, gaussian(plot_radii, *fit), label=f'{title} fit')

plt.title('Gaussian Fit to Surface Brightness vs Radii for O2 and O3')
ax.set_xlabel('Radii')
ax.set_ylabel('Surface brightness')
ax.set_yscale('log')
ax.set_ylim(1, 1e5)
ax.legend()
plt.show()

相关问题