python 网络中的多层图

gpfsuwkq  于 2023-09-29  发布在  Python
关注(0)|答案(2)|浏览(160)

我想创建一个多层图(如所附的图像),通过使用networkx连接用以下代码编写的两个图

#Graph1
g1 = nx.read_edgelist('sample.txt', nodetype=str)
pos = nx.shell_layout(g)
plt.figure(figsize=(10, 10))
nx.draw_networkx_edges(g, pos, edge_color='khaki', alpha=1)
nx.draw_networkx_nodes(g,pos,node_color='r',alpha=0.5,node_size=1000)
nx.draw_networkx_labels(g, pos, font_size=10,font_family='IPAexGothic')
plt.axis('off')

#Graph2
g2 = nx.read_edgelist('sample2.txt', nodetype=str)
pos = nx.shell_layout(g)
plt.figure(figsize=(10, 10))
nx.draw_networkx_edges(g, pos, edge_color='khaki', alpha=1)
nx.draw_networkx_nodes(g,pos,node_color='r',alpha=0.5,node_size=1000)
nx.draw_networkx_labels(g, pos, font_size=10,font_family='IPAexGothic')
plt.axis('off')

b5buobof

b5buobof1#

networkx中目前没有支持分层布局的功能,更不用说如图所示的可视化了。所以我们得自己卷。
下面的实现LayeredNetworkGraph假设您有一个表示不同层的图表列表[g1, g2, ..., gn]。在层内,对应的(子)图定义连通性。在层之间,如果后续层中的节点具有相同的节点ID,则它们被连接。
由于没有布局函数(AFAIK)可以计算三维中的节点位置,并对层内的节点施加平面度约束,因此我们使用了一个小技巧:我们创建跨所有层的图形合成,计算二维中的位置,然后将这些位置应用于所有层中的节点。人们可以用平面度约束计算一个真正的力导向布局,但这将是大量的工作,因为你的例子只使用了一个shell布局(这将不受影响),我没有打扰。在许多情况下,差异很小。
如果你想改变可视化的各个方面(大小、宽度、颜色),可以看看draw方法。您可能需要的大多数更改都可以在那里进行。

#!/usr/bin/env python
"""
Plot multi-graphs in 3D.
"""
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx

from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Line3DCollection

class LayeredNetworkGraph(object):

    def __init__(self, graphs, node_labels=None, layout=nx.spring_layout, ax=None):
        """Given an ordered list of graphs [g1, g2, ..., gn] that represent
        different layers in a multi-layer network, plot the network in
        3D with the different layers separated along the z-axis.

        Within a layer, the corresponding graph defines the connectivity.
        Between layers, nodes in subsequent layers are connected if
        they have the same node ID.

        Arguments:
        ----------
        graphs : list of networkx.Graph objects
            List of graphs, one for each layer.

        node_labels : dict node ID : str label or None (default None)
            Dictionary mapping nodes to labels.
            If None is provided, nodes are not labelled.

        layout_func : function handle (default networkx.spring_layout)
            Function used to compute the layout.

        ax : mpl_toolkits.mplot3d.Axes3d instance or None (default None)
            The axis to plot to. If None is given, a new figure and a new axis are created.

        """

        # book-keeping
        self.graphs = graphs
        self.total_layers = len(graphs)

        self.node_labels = node_labels
        self.layout = layout

        if ax:
            self.ax = ax
        else:
            fig = plt.figure()
            self.ax = fig.add_subplot(111, projection='3d')

        # create internal representation of nodes and edges
        self.get_nodes()
        self.get_edges_within_layers()
        self.get_edges_between_layers()

        # compute layout and plot
        self.get_node_positions()
        self.draw()

    def get_nodes(self):
        """Construct an internal representation of nodes with the format (node ID, layer)."""
        self.nodes = []
        for z, g in enumerate(self.graphs):
            self.nodes.extend([(node, z) for node in g.nodes()])

    def get_edges_within_layers(self):
        """Remap edges in the individual layers to the internal representations of the node IDs."""
        self.edges_within_layers = []
        for z, g in enumerate(self.graphs):
            self.edges_within_layers.extend([((source, z), (target, z)) for source, target in g.edges()])

    def get_edges_between_layers(self):
        """Determine edges between layers. Nodes in subsequent layers are
        thought to be connected if they have the same ID."""
        self.edges_between_layers = []
        for z1, g in enumerate(self.graphs[:-1]):
            z2 = z1 + 1
            h = self.graphs[z2]
            shared_nodes = set(g.nodes()) & set(h.nodes())
            self.edges_between_layers.extend([((node, z1), (node, z2)) for node in shared_nodes])

    def get_node_positions(self, *args, **kwargs):
        """Get the node positions in the layered layout."""
        # What we would like to do, is apply the layout function to a combined, layered network.
        # However, networkx layout functions are not implemented for the multi-dimensional case.
        # Futhermore, even if there was such a layout function, there probably would be no straightforward way to
        # specify the planarity requirement for nodes within a layer.
        # Therefor, we compute the layout for the full network in 2D, and then apply the
        # positions to the nodes in all planes.
        # For a force-directed layout, this will approximately do the right thing.
        # TODO: implement FR in 3D with layer constraints.

        composition = self.graphs[0]
        for h in self.graphs[1:]:
            composition = nx.compose(composition, h)

        pos = self.layout(composition, *args, **kwargs)

        self.node_positions = dict()
        for z, g in enumerate(self.graphs):
            self.node_positions.update({(node, z) : (*pos[node], z) for node in g.nodes()})

    def draw_nodes(self, nodes, *args, **kwargs):
        x, y, z = zip(*[self.node_positions[node] for node in nodes])
        self.ax.scatter(x, y, z, *args, **kwargs)

    def draw_edges(self, edges, *args, **kwargs):
        segments = [(self.node_positions[source], self.node_positions[target]) for source, target in edges]
        line_collection = Line3DCollection(segments, *args, **kwargs)
        self.ax.add_collection3d(line_collection)

    def get_extent(self, pad=0.1):
        xyz = np.array(list(self.node_positions.values()))
        xmin, ymin, _ = np.min(xyz, axis=0)
        xmax, ymax, _ = np.max(xyz, axis=0)
        dx = xmax - xmin
        dy = ymax - ymin
        return (xmin - pad * dx, xmax + pad * dx), \
            (ymin - pad * dy, ymax + pad * dy)

    def draw_plane(self, z, *args, **kwargs):
        (xmin, xmax), (ymin, ymax) = self.get_extent(pad=0.1)
        u = np.linspace(xmin, xmax, 10)
        v = np.linspace(ymin, ymax, 10)
        U, V = np.meshgrid(u ,v)
        W = z * np.ones_like(U)
        self.ax.plot_surface(U, V, W, *args, **kwargs)

    def draw_node_labels(self, node_labels, *args, **kwargs):
        for node, z in self.nodes:
            if node in node_labels:
                ax.text(*self.node_positions[(node, z)], node_labels[node], *args, **kwargs)

    def draw(self):

        self.draw_edges(self.edges_within_layers,  color='k', alpha=0.3, linestyle='-', zorder=2)
        self.draw_edges(self.edges_between_layers, color='k', alpha=0.3, linestyle='--', zorder=2)

        for z in range(self.total_layers):
            self.draw_plane(z, alpha=0.2, zorder=1)
            self.draw_nodes([node for node in self.nodes if node[1]==z], s=300, zorder=3)

        if self.node_labels:
            self.draw_node_labels(self.node_labels,
                                  horizontalalignment='center',
                                  verticalalignment='center',
                                  zorder=100)

if __name__ == '__main__':

    # define graphs
    n = 5
    g = nx.erdos_renyi_graph(4*n, p=0.1)
    h = nx.erdos_renyi_graph(3*n, p=0.2)
    i = nx.erdos_renyi_graph(2*n, p=0.4)

    node_labels = {nn : str(nn) for nn in range(4*n)}

    # initialise figure and plot
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    LayeredNetworkGraph([g, h, i], node_labels=node_labels, ax=ax, layout=nx.spring_layout)
    ax.set_axis_off()
    plt.show()
ryhaxcpt

ryhaxcpt2#

上述解决方案在最新的networkx上对我不起作用。I created a gist that provides a flat networkx-ified version

import proplot as plt, cmasher as cmr, pandas as pd, numpy as np, os, sys, networkx as nx, warnings

def multilayer_layout(
    G: nx.Graph,
    subset_key="layer",
    layout=nx.spring_layout,
    separation: float = 2.0,
) -> dict:
    # set positions
    layers = {}
    for node, layer in nx.get_node_attributes(G, subset_key).items():
        layers[layer] = layers.get(layer, []) + [node]

    # set layout within each layer
    pos = {}
    for layer, nodes in layers.items():
        subgraph = G.subgraph(nodes)
        layer_pos = {
            node: node_pos + separation * np.array([0, int(layer)])
            for node, node_pos in layout(subgraph).items()
        }
        pos.update(layer_pos)
    return pos

def draw_multilayer_layout(
    G,
    subset_key="layer",
    ax=None,
    layout=nx.spring_layout,
    separation=2.0,
    node_kwargs=dict(node_size=12),
    within_edge_kwargs=dict(style="solid", alpha=0.05),
    between_edge_kwargs=dict(style="dashed", alpha=0.65),
    cmap="Pastel2",
):
    # get the layout
    pos = multilayer_layout(
        G,
        subset_key=subset_key,
        layout=layout,
        separation=separation,
    )

    # find connections between and plot them differently
    connectors = set()
    others = set()
    for node in G.nodes():
        for neighbor in G.neighbors(node):
            if G.nodes[node][subset_key] != G.nodes[neighbor][subset_key]:
                connectors.add((node, neighbor))
            else:
                others.add((node, neighbor))
    # draw the graph
    if ax is None:
        fig, ax = plt.subplots()

    attr = set(nx.get_node_attributes(G, subset_key).values())
    color_space = np.linspace(0, 1, len(attr), 0)
    cmap = cmr.pride(color_space)

    node_colors = [cmap[G.nodes[node]["layer"]] for node in G.nodes()]
    nx.draw_networkx_nodes(G, pos, node_color=node_colors, **node_kwargs)
    nx.draw_networkx_edges(G, pos, edgelist=others, **within_edge_kwargs)
    nx.draw_networkx_edges(G, pos, edgelist=connectors, **between_edge_kwargs)
    return ax

def disjoint_union_all(Gs: list[nx.Graph]) -> nx.Graph:
    G = Gs[0]
    for Gi in Gs[1:]:
        G = nx.disjoint_union(G, Gi)
    return G

if __name__ == "__main__":
    graphs = []
    for layer in range(3):
        g = nx.erdos_renyi_graph(100, 0.2)
        nx.set_node_attributes(g, layer, "layer")
        graphs.append(g)

    g = disjoint_union_all(graphs)
    from random import sample

    for ni in range(100):
        edge = sample(list(g.nodes()), 2)
        if not g.has_edge(*edge):
            g.add_edge(*edge)

    fig, ax = plt.subplots()
    draw_multilayer_layout(g, ax=ax)
    ax.axis("equal")
    ax.grid(False)

    plt.show(block=1)

相关问题