在R中设置输出

k0pti3hp  于 2023-10-13  发布在  其他
关注(0)|答案(3)|浏览(100)

我想在R studio中得到集合A <- {1,2,3,4,5,6,7,8,10}的幂集。它显示集合的前几个元素,但之后显示以下内容。

{{}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {10}, {1, 2}, {1, 3}, {1,
  4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 10}, {2, 3}, {2, 4}, {2, 5},
  {2, 6}, {2, 7}, {2, 8}, {2, 10}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3,
  8}, {3, 10}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {4, 10}, {5, 6}, {5, 7},
  {5, 8}, {5, 10}, {6, 7}, {6, 8}, {6, 10}, {7, 8}, {7, 10}, {8, 10},
  {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 2, 8}, {1,
  2, 10}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 3, 8}, {1, 3,
  10}, {1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {1, 4, 8}, {1, 4, 10}, {1, 5,
  6}, {1, 5, 7}, {1, 5, 8}, {1, 5, 10}, {1, 6, 7}, {1, 6, 8}, {1, 6,
  10}, {1, 7, 8}, {1, 7, 10}, {1, 8, 10}, {2, 3, 4}, {2, 3, 5}, {2, 3,
  6}, {2, 3, 7}, {2, 3, 8}, {2, 3, 10}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7},
  {2, 4, 8}, {2, 4, 10}, {2, 5, 6}, {2, 5, 7}, {2, 5, 8}, {2, 5, 10},
  {2, 6, 7}, {2, 6, 8}, {2, 6, 10}, {2, 7, 8}, {2, 7, 10}, {2, 8, 10},
  {3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 4, 8}, {3, 4, 10}, {3, 5, 6}, {3,
  5, 7}, {3, 5, 8}, {3, 5, 10}, {3, 6, 7}, {3, 6, 8}, {3, 6, 10}, {3, 7,
  8}, {3, 7, 10}, {3, 8, 10}, {4, 5, 6}, {4, 5, 7}, {4, 5, 8}, {4, 5,
  10}, {4, 6, 7}, {4, 6, 8}, {4, 6, 10}, {4, 7, 8}, {4, 7, 10}, {4, 8,
  10}, {5, 6, 7}, {5, 6, 8}, {5, 6, 10}, {5, 7, 8}, {5, 7, 10}, {5, 8,
  10}, {6, 7, 8}, {6, 7, 10}, {6, 8, 10}, {7, 8, 10}, {1, 2, 3, 4}, {1,
  2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 3, 8}, {1, 2, 3, 10}, {1,
  2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 10}, {1,
  2, 5, 6}, {1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 5, 10}, {1, 2, 6, 7}, {1,
  2, 6, 8}, {1, 2, 6, 10}, {1, 2, 7, 8}, {1, 2, 7, 10}, {1, 2, 8, 10},
  {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 4, 10},
  {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 10}, {1, 3, 6, 7},
  {1, 3, 6, 8}, {1, 3, 6, 10}, {1, 3, 7, 8}, {1, 3, 7, 10}, {1, 3, 8,
  10}, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 5, 10}, {1, 4,
  6, 7}, {1, 4, 6, 8}, {1, 4, 6, 10}, {1, 4, 7, 8}, {1, 4, 7, 10}, {1,
  4, 8, 10}, {1, 5, 6, 7}, {1, 5, 6, 8}, {1, 5, 6, 10}, {1, 5, 7, 8},
  {1, 5, 7, 10}, {1, 5, 8, 10}, {1, 6, 7, 8}, {1, 6, 7, 10}, {1, 6, 8,
  10}, {1, 7, 8, 10}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3,
  4, 8}, {2, 3, 4, 10}, {2, 3, 5, 6}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3,
  5, 10}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 3, 6, 10}, {2, 3, 7, 8}, {2,
  3, 7, 10}, {2, 3, 8, 10}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 4, 5, 8},
  {2, 4, 5, 10}, {2, 4, 6, 7}, {2, 4, 6, 8}, {2, 4, 6, 10}, {2, 4, 7,
  8}, {2, 4, 7, 10}, {2, 4, 8, 10}, {2, 5, 6, 7}, {2, 5, 6, 8}, {2, 5,
  6, 10}, {2, 5, 7, 8}, {2, 5, 7, 10}, {2, 5, 8, 10}, {2, 6, 7, 8}, {2,
  6, 7, 10}, {2, 6, 8, 10}, {2, 7, 8, 10}, {3, 4, 5, 6}, {3, 4, 5, 7},
  {3, 4, 5, 8}, {3, 4, 5, 10}, {3, 4, 6, 7}, {3, 4, 6, 8}, {3, 4, 6,
  10}, {3, 4, 7, 8}, {3, 4, 7, 10}, {3, 4, 8, 10}, {3, 5, 6, 7}, {3, 5,
  6, 8}, {3, 5, 6, 10}, {3, 5, 7, 8}, {3, 5, 7, 10}, {3, 5, 8, 10}, {3,
  6, 7, 8}, {3, 6, 7, 10}, {3, 6, 8, 10}, {3, 7, 8, 10}, {4, 5, 6, 7},
  {4, 5, 6, 8}, {4, 5, 6, 10}, {4, 5, 7, 8}, {4, 5, 7, 10}, {4, 5, 8,
  10}, {4, 6, 7, 8}, {4, 6, 7, 10}, {4, 6, 8, 10}, {4, 7, 8, 10}, {5, 6,
  7, 8}, {5, 6, 7, 10}, {5, 6, 8, 10}, {5, 7, 8, 10}, {6, 7, 8, 10}, {1,
  2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 7}, {1, 2, 3, 4, 8}, {1, 2,
  3, 4, 10}, {1, 2, 3, 5, 6}, {1, 2, 3, 5, 7}, {1, 2, 3, 5, 8}, {1, 2,
  3, 5, 10}, {1, 2, 3, 6, 7}, {1, 2, 3, 6, 8}, {1, 2, 3, 6, 10}, {1, 2,
  3, 7, 8}, {1, 2, 3, 7, 10}, {1, 2, 3, 8, 10}, {1, 2, 4, 5, 6}, {1, 2,
  4, 5, 7}, {1, 2, 4, 5, 8}, {1, 2, 4, 5, 10}, {1, 2, 4, 6, 7}, {1, 2,
  4, 6, 8}, {1, 2, 4, 6, 10}, {1, 2, 4, 7, 8}, {1, 2, 4, 7, 10}, {1, 2,
  4, 8, 10}, {1, 2, 5, 6, 7}, {1, 2, 5, 6, 8}, {1, 2, 5, 6, 10}, {1, 2,
  5, 7, 8}, {1, 2, 5, 7, 10}, {1, 2, 5, 8, 10}, {1, 2, 6, 7, 8}, {1, 2,
  6, 7, 10}, {1, 2, 6, 8, 10}, {1, 2, 7, 8, 10}, {1, 3, 4, 5, 6}, {1, 3,
  4, 5, 7}, {1, 3, 4, 5, 8}, {1, 3, 4, 5, 10}, {1, 3, 4, 6, 7}, {1, 3,
  4, 6, 8}, {1, 3, 4, 6, 10}, {1, 3, 4, 7, 8}, {1, 3, 4, 7, 10}, {1, 3,
  4, 8, 10}, {1, 3, 5, 6, 7}, {1, 3, 5, 6, 8}, {1, 3, 5, 6, 10}, {1, 3,
  5, 7, 8}, {1, 3, 5, 7, 10}, {1, 3, 5, 8, 10}, {1, 3, 6, 7, 8}, {1, 3,
  6, 7, 10}, {1, 3, 6, 8, 10}, {1, 3, 7, 8, 10}, {1, 4, 5, 6, 7}, {1, 4,
  5, 6, 8}, {1, 4, 5, 6, 10}, {1, 4, 5, 7, 8}, {1, 4, 5, 7, 10}, {1, 4,
  5, 8, 10}, {1, 4, 6, 7, 8}, {1, 4, 6, 7, 10}, {1, 4, 6, 8, 10}, {1, 4,
  7, 8, 10}, {1, 5, 6, 7, 8}, {1, 5, 6, 7, 10}, {1, 5, 6, 8, 10}, {1, 5,
  7, 8, 10}, {1, 6, 7, 8, 10}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 7}, {2, 3,
  4, 5, 8}, {2, 3, 4, 5, 10}, {2, 3, 4, 6, 7}, {2, 3, 4, 6, 8}, {2, 3,
  4, 6, 10}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 10}, {2, 3, 4, 8, 10}, {2, 3,
  5, 6, 7}, {2, 3, 5, 6, 8}, {2, 3, 5, 6, 10}, {2, 3, 5, 7, 8}, {2, 3,
  5, 7, 10}, {2, 3, 5, 8, 10}, {2, 3, 6, 7, 8}, {2, 3, 6, 7, 10}, {2, 3,
  6, 8, 10}, {2, 3, 7, 8, 10}, {2, 4, 5, 6, 7}, {2, 4, 5, 6, 8}, {2, 4,
  5, 6, 10}, {2, 4, 5, 7, 8}, {2, 4, 5, 7, 10}, {2, 4, 5, 8, 10}, {2, 4,
  6, 7, 8}, {2, 4, 6, 7, 10}, {2, 4, 6, 8, 10}, {2, 4, 7, 8, 10}, {2, 5,
  6, 7, 8}, {2, 5, 6, 7, 10}, {2, 5, 6, 8, 10}, {2, 5, 7, 8, 10}, {2, 6,
  7, 8, 10}, {3, 4, 5, 6, 7}, {3, 4, 5, 6, 8}, {3, 4, 5, 6, 10}, {3, 4,
  5, 7, 8}, {3, 4, 5, 7, 10}, {3, 4, 5, 8, 10}, {3, 4, 6, 7, 8}, {3, 4,
  6, 7, 10}, {3, 4, 6, 8, 10}, {3, 4, 7, 8, 10}, {3, 5, 6, 7, 8}, {3, 5,
  6, 7, 10}, {3, 5, 6, 8, 10}, {3, 5, 7, 8, 10}, {3, 6, 7, 8, 10}, {4,
  5, 6, 7, 8}, {4, 5, 6, 7, 10}, {4, 5, 6, 8, 10}, {4, 5, 7, 8, 10}, {4,
  6, 7, 8, 10}, {5, 6, 7, 8, 10}, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>, <<set(6)>>,
  <<set(6)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>,
  <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>,
  <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>,
  <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>,
  <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>,
  <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>,
  <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>, <<set(7)>>,
  <<set(7)>>, <<set(7)>>, <<set(8)>>, <<set(8)>>, <<set(8)>>,
  <<set(8)>>, <<set(8)>>, <<set(8)>>, <<set(8)>>, <<set(8)>>,
  <<set(8)>>, <<set(9)>>}

这是我的输出代码

library(sets)
A = set(1,2,3,4,5,6,7,8,10)
powerset_of_A = set_power(A)
powerset_of_A

我希望代码能够完全显示powerset的子集,而不用<<set(value)>>元素替换剩余的set

qco9c6ql

qco9c6ql1#

这需要一些挖掘,但是你可以为sets传递一个limit参数给print

print(p, limit = 100)
{{}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {1, 2}, {1, 3}, {1, 4}, {1, 5},
# ...
# lot of output omitted
# ...
{1, 2, 3, 4, 5, 6, 7, 8, 10}, {1, 2, 3, 4, 5, 6, 7, 9, 10}, {1, 2, 3, 4, 5, 6, 8,
 9, 10}, {1, 2, 3, 4, 5, 7, 8, 9, 10}, {1, 2, 3, 4, 6, 7, 8, 9, 10}, {1, 2, 3, 5, 6, 7, 8,
 9, 10}, {1, 2, 4, 5, 6, 7, 8, 9, 10}, {1, 3, 4, 5, 6, 7, 8, 9, 10}, {2, 3, 4, 5, 6, 7, 8,
 9, 10}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}

我发现这个是因为... sets:::print.set调用sets:::format.setsets:::format.set调用sets:::.format_set_or_tuplesets:::.format_set_or_tuple调用sets:::LABELS,正是这个LABELS函数接受limit参数。幸运的是,...在整个过程中使用得当,因此参数是从print一直到LABELS

u91tlkcl

u91tlkcl2#

替换较长的集合是setprint()方法的一部分。实际数据不受此影响。set的print方法有一个limit参数。将其设置为10,输出将不会被截断。
或者:您可以更改对象的类以使用另一个print方法:as.list()是一个选项。

library(sets)
A = set(1, 2, 3, 4, 5, 6, 7, 8, 10)
powerset_of_A = set_power(A)

powerset_of_A |> 
  print(limit = 10)
#> {{}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {10}, {1, 2}, {1, 3}, {1,
#>  4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 10}, {2, 3}, {2, 4}, {2, 5},
#>  {2, 6}, {2, 7}, {2, 8}, {2, 10}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3,
#>  8}, {3, 10}, {4, 5}, {4, 6}, {4, 7}, {4, 8}, {4, 10}, {5, 6}, {5, 7},
#>  {5, 8}, {5, 10}, {6, 7}, {6, 8}, {6, 10}, {7, 8}, {7, 10}, {8, 10},
#>  {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 2, 8}, {1,
#>  2, 10}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 3, 8}, {1, 3,
#>  10}, {1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {1, 4, 8}, {1, 4, 10}, {1, 5,
#>  6}, {1, 5, 7}, {1, 5, 8}, {1, 5, 10}, {1, 6, 7}, {1, 6, 8}, {1, 6,
#>  10}, {1, 7, 8}, {1, 7, 10}, {1, 8, 10}, {2, 3, 4}, {2, 3, 5}, {2, 3,
#>  6}, {2, 3, 7}, {2, 3, 8}, {2, 3, 10}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7},
#>  {2, 4, 8}, {2, 4, 10}, {2, 5, 6}, {2, 5, 7}, {2, 5, 8}, {2, 5, 10},
#>  {2, 6, 7}, {2, 6, 8}, {2, 6, 10}, {2, 7, 8}, {2, 7, 10}, {2, 8, 10},
#>  {3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 4, 8}, {3, 4, 10}, {3, 5, 6}, {3,
#>  5, 7}, {3, 5, 8}, {3, 5, 10}, {3, 6, 7}, {3, 6, 8}, {3, 6, 10}, {3, 7,
#>  8}, {3, 7, 10}, {3, 8, 10}, {4, 5, 6}, {4, 5, 7}, {4, 5, 8}, {4, 5,
#>  10}, {4, 6, 7}, {4, 6, 8}, {4, 6, 10}, {4, 7, 8}, {4, 7, 10}, {4, 8,
#>  10}, {5, 6, 7}, {5, 6, 8}, {5, 6, 10}, {5, 7, 8}, {5, 7, 10}, {5, 8,
#>  10}, {6, 7, 8}, {6, 7, 10}, {6, 8, 10}, {7, 8, 10}, {1, 2, 3, 4}, {1,
#>  2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 3, 8}, {1, 2, 3, 10}, {1,
#>  2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 4, 8}, {1, 2, 4, 10}, {1,
#>  2, 5, 6}, {1, 2, 5, 7}, {1, 2, 5, 8}, {1, 2, 5, 10}, {1, 2, 6, 7}, {1,
#>  2, 6, 8}, {1, 2, 6, 10}, {1, 2, 7, 8}, {1, 2, 7, 10}, {1, 2, 8, 10},
#>  {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}, {1, 3, 4, 10},
#>  {1, 3, 5, 6}, {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 5, 10}, {1, 3, 6, 7},
#>  {1, 3, 6, 8}, {1, 3, 6, 10}, {1, 3, 7, 8}, {1, 3, 7, 10}, {1, 3, 8,
#>  10}, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 5, 10}, {1, 4,
#>  6, 7}, {1, 4, 6, 8}, {1, 4, 6, 10}, {1, 4, 7, 8}, {1, 4, 7, 10}, {1,
#>  4, 8, 10}, {1, 5, 6, 7}, {1, 5, 6, 8}, {1, 5, 6, 10}, {1, 5, 7, 8},
#>  {1, 5, 7, 10}, {1, 5, 8, 10}, {1, 6, 7, 8}, {1, 6, 7, 10}, {1, 6, 8,
#>  10}, {1, 7, 8, 10}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3,
#>  4, 8}, {2, 3, 4, 10}, {2, 3, 5, 6}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3,
#>  5, 10}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 3, 6, 10}, {2, 3, 7, 8}, {2,
#>  3, 7, 10}, {2, 3, 8, 10}, {2, 4, 5, 6}, {2, 4, 5, 7}, {2, 4, 5, 8},
#>  {2, 4, 5, 10}, {2, 4, 6, 7}, {2, 4, 6, 8}, {2, 4, 6, 10}, {2, 4, 7,
#>  8}, {2, 4, 7, 10}, {2, 4, 8, 10}, {2, 5, 6, 7}, {2, 5, 6, 8}, {2, 5,
#>  6, 10}, {2, 5, 7, 8}, {2, 5, 7, 10}, {2, 5, 8, 10}, {2, 6, 7, 8}, {2,
#>  6, 7, 10}, {2, 6, 8, 10}, {2, 7, 8, 10}, {3, 4, 5, 6}, {3, 4, 5, 7},
#>  {3, 4, 5, 8}, {3, 4, 5, 10}, {3, 4, 6, 7}, {3, 4, 6, 8}, {3, 4, 6,
#>  10}, {3, 4, 7, 8}, {3, 4, 7, 10}, {3, 4, 8, 10}, {3, 5, 6, 7}, {3, 5,
#>  6, 8}, {3, 5, 6, 10}, {3, 5, 7, 8}, {3, 5, 7, 10}, {3, 5, 8, 10}, {3,
#>  6, 7, 8}, {3, 6, 7, 10}, {3, 6, 8, 10}, {3, 7, 8, 10}, {4, 5, 6, 7},
#>  {4, 5, 6, 8}, {4, 5, 6, 10}, {4, 5, 7, 8}, {4, 5, 7, 10}, {4, 5, 8,
#>  10}, {4, 6, 7, 8}, {4, 6, 7, 10}, {4, 6, 8, 10}, {4, 7, 8, 10}, {5, 6,
#>  7, 8}, {5, 6, 7, 10}, {5, 6, 8, 10}, {5, 7, 8, 10}, {6, 7, 8, 10}, {1,
#>  2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 4, 7}, {1, 2, 3, 4, 8}, {1, 2,
#>  3, 4, 10}, {1, 2, 3, 5, 6}, {1, 2, 3, 5, 7}, {1, 2, 3, 5, 8}, {1, 2,
#>  3, 5, 10}, {1, 2, 3, 6, 7}, {1, 2, 3, 6, 8}, {1, 2, 3, 6, 10}, {1, 2,
#>  3, 7, 8}, {1, 2, 3, 7, 10}, {1, 2, 3, 8, 10}, {1, 2, 4, 5, 6}, {1, 2,
#>  4, 5, 7}, {1, 2, 4, 5, 8}, {1, 2, 4, 5, 10}, {1, 2, 4, 6, 7}, {1, 2,
#>  4, 6, 8}, {1, 2, 4, 6, 10}, {1, 2, 4, 7, 8}, {1, 2, 4, 7, 10}, {1, 2,
#>  4, 8, 10}, {1, 2, 5, 6, 7}, {1, 2, 5, 6, 8}, {1, 2, 5, 6, 10}, {1, 2,
#>  5, 7, 8}, {1, 2, 5, 7, 10}, {1, 2, 5, 8, 10}, {1, 2, 6, 7, 8}, {1, 2,
#>  6, 7, 10}, {1, 2, 6, 8, 10}, {1, 2, 7, 8, 10}, {1, 3, 4, 5, 6}, {1, 3,
#>  4, 5, 7}, {1, 3, 4, 5, 8}, {1, 3, 4, 5, 10}, {1, 3, 4, 6, 7}, {1, 3,
#>  4, 6, 8}, {1, 3, 4, 6, 10}, {1, 3, 4, 7, 8}, {1, 3, 4, 7, 10}, {1, 3,
#>  4, 8, 10}, {1, 3, 5, 6, 7}, {1, 3, 5, 6, 8}, {1, 3, 5, 6, 10}, {1, 3,
#>  5, 7, 8}, {1, 3, 5, 7, 10}, {1, 3, 5, 8, 10}, {1, 3, 6, 7, 8}, {1, 3,
#>  6, 7, 10}, {1, 3, 6, 8, 10}, {1, 3, 7, 8, 10}, {1, 4, 5, 6, 7}, {1, 4,
#>  5, 6, 8}, {1, 4, 5, 6, 10}, {1, 4, 5, 7, 8}, {1, 4, 5, 7, 10}, {1, 4,
#>  5, 8, 10}, {1, 4, 6, 7, 8}, {1, 4, 6, 7, 10}, {1, 4, 6, 8, 10}, {1, 4,
#>  7, 8, 10}, {1, 5, 6, 7, 8}, {1, 5, 6, 7, 10}, {1, 5, 6, 8, 10}, {1, 5,
#>  7, 8, 10}, {1, 6, 7, 8, 10}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 7}, {2, 3,
#>  4, 5, 8}, {2, 3, 4, 5, 10}, {2, 3, 4, 6, 7}, {2, 3, 4, 6, 8}, {2, 3,
#>  4, 6, 10}, {2, 3, 4, 7, 8}, {2, 3, 4, 7, 10}, {2, 3, 4, 8, 10}, {2, 3,
#>  5, 6, 7}, {2, 3, 5, 6, 8}, {2, 3, 5, 6, 10}, {2, 3, 5, 7, 8}, {2, 3,
#>  5, 7, 10}, {2, 3, 5, 8, 10}, {2, 3, 6, 7, 8}, {2, 3, 6, 7, 10}, {2, 3,
#>  6, 8, 10}, {2, 3, 7, 8, 10}, {2, 4, 5, 6, 7}, {2, 4, 5, 6, 8}, {2, 4,
#>  5, 6, 10}, {2, 4, 5, 7, 8}, {2, 4, 5, 7, 10}, {2, 4, 5, 8, 10}, {2, 4,
#>  6, 7, 8}, {2, 4, 6, 7, 10}, {2, 4, 6, 8, 10}, {2, 4, 7, 8, 10}, {2, 5,
#>  6, 7, 8}, {2, 5, 6, 7, 10}, {2, 5, 6, 8, 10}, {2, 5, 7, 8, 10}, {2, 6,
#>  7, 8, 10}, {3, 4, 5, 6, 7}, {3, 4, 5, 6, 8}, {3, 4, 5, 6, 10}, {3, 4,
#>  5, 7, 8}, {3, 4, 5, 7, 10}, {3, 4, 5, 8, 10}, {3, 4, 6, 7, 8}, {3, 4,
#>  6, 7, 10}, {3, 4, 6, 8, 10}, {3, 4, 7, 8, 10}, {3, 5, 6, 7, 8}, {3, 5,
#>  6, 7, 10}, {3, 5, 6, 8, 10}, {3, 5, 7, 8, 10}, {3, 6, 7, 8, 10}, {4,
#>  5, 6, 7, 8}, {4, 5, 6, 7, 10}, {4, 5, 6, 8, 10}, {4, 5, 7, 8, 10}, {4,
#>  6, 7, 8, 10}, {5, 6, 7, 8, 10}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5,
#>  7}, {1, 2, 3, 4, 5, 8}, {1, 2, 3, 4, 5, 10}, {1, 2, 3, 4, 6, 7}, {1,
#>  2, 3, 4, 6, 8}, {1, 2, 3, 4, 6, 10}, {1, 2, 3, 4, 7, 8}, {1, 2, 3, 4,
#>  7, 10}, {1, 2, 3, 4, 8, 10}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 5, 6, 8},
#>  {1, 2, 3, 5, 6, 10}, {1, 2, 3, 5, 7, 8}, {1, 2, 3, 5, 7, 10}, {1, 2,
#>  3, 5, 8, 10}, {1, 2, 3, 6, 7, 8}, {1, 2, 3, 6, 7, 10}, {1, 2, 3, 6, 8,
#>  10}, {1, 2, 3, 7, 8, 10}, {1, 2, 4, 5, 6, 7}, {1, 2, 4, 5, 6, 8}, {1,
#>  2, 4, 5, 6, 10}, {1, 2, 4, 5, 7, 8}, {1, 2, 4, 5, 7, 10}, {1, 2, 4, 5,
#>  8, 10}, {1, 2, 4, 6, 7, 8}, {1, 2, 4, 6, 7, 10}, {1, 2, 4, 6, 8, 10},
#>  {1, 2, 4, 7, 8, 10}, {1, 2, 5, 6, 7, 8}, {1, 2, 5, 6, 7, 10}, {1, 2,
#>  5, 6, 8, 10}, {1, 2, 5, 7, 8, 10}, {1, 2, 6, 7, 8, 10}, {1, 3, 4, 5,
#>  6, 7}, {1, 3, 4, 5, 6, 8}, {1, 3, 4, 5, 6, 10}, {1, 3, 4, 5, 7, 8},
#>  {1, 3, 4, 5, 7, 10}, {1, 3, 4, 5, 8, 10}, {1, 3, 4, 6, 7, 8}, {1, 3,
#>  4, 6, 7, 10}, {1, 3, 4, 6, 8, 10}, {1, 3, 4, 7, 8, 10}, {1, 3, 5, 6,
#>  7, 8}, {1, 3, 5, 6, 7, 10}, {1, 3, 5, 6, 8, 10}, {1, 3, 5, 7, 8, 10},
#>  {1, 3, 6, 7, 8, 10}, {1, 4, 5, 6, 7, 8}, {1, 4, 5, 6, 7, 10}, {1, 4,
#>  5, 6, 8, 10}, {1, 4, 5, 7, 8, 10}, {1, 4, 6, 7, 8, 10}, {1, 5, 6, 7,
#>  8, 10}, {2, 3, 4, 5, 6, 7}, {2, 3, 4, 5, 6, 8}, {2, 3, 4, 5, 6, 10},
#>  {2, 3, 4, 5, 7, 8}, {2, 3, 4, 5, 7, 10}, {2, 3, 4, 5, 8, 10}, {2, 3,
#>  4, 6, 7, 8}, {2, 3, 4, 6, 7, 10}, {2, 3, 4, 6, 8, 10}, {2, 3, 4, 7, 8,
#>  10}, {2, 3, 5, 6, 7, 8}, {2, 3, 5, 6, 7, 10}, {2, 3, 5, 6, 8, 10}, {2,
#>  3, 5, 7, 8, 10}, {2, 3, 6, 7, 8, 10}, {2, 4, 5, 6, 7, 8}, {2, 4, 5, 6,
#>  7, 10}, {2, 4, 5, 6, 8, 10}, {2, 4, 5, 7, 8, 10}, {2, 4, 6, 7, 8, 10},
#>  {2, 5, 6, 7, 8, 10}, {3, 4, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 10}, {3, 4,
#>  5, 6, 8, 10}, {3, 4, 5, 7, 8, 10}, {3, 4, 6, 7, 8, 10}, {3, 5, 6, 7,
#>  8, 10}, {4, 5, 6, 7, 8, 10}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6,
#>  8}, {1, 2, 3, 4, 5, 6, 10}, {1, 2, 3, 4, 5, 7, 8}, {1, 2, 3, 4, 5, 7,
#>  10}, {1, 2, 3, 4, 5, 8, 10}, {1, 2, 3, 4, 6, 7, 8}, {1, 2, 3, 4, 6, 7,
#>  10}, {1, 2, 3, 4, 6, 8, 10}, {1, 2, 3, 4, 7, 8, 10}, {1, 2, 3, 5, 6,
#>  7, 8}, {1, 2, 3, 5, 6, 7, 10}, {1, 2, 3, 5, 6, 8, 10}, {1, 2, 3, 5, 7,
#>  8, 10}, {1, 2, 3, 6, 7, 8, 10}, {1, 2, 4, 5, 6, 7, 8}, {1, 2, 4, 5, 6,
#>  7, 10}, {1, 2, 4, 5, 6, 8, 10}, {1, 2, 4, 5, 7, 8, 10}, {1, 2, 4, 6,
#>  7, 8, 10}, {1, 2, 5, 6, 7, 8, 10}, {1, 3, 4, 5, 6, 7, 8}, {1, 3, 4, 5,
#>  6, 7, 10}, {1, 3, 4, 5, 6, 8, 10}, {1, 3, 4, 5, 7, 8, 10}, {1, 3, 4,
#>  6, 7, 8, 10}, {1, 3, 5, 6, 7, 8, 10}, {1, 4, 5, 6, 7, 8, 10}, {2, 3,
#>  4, 5, 6, 7, 8}, {2, 3, 4, 5, 6, 7, 10}, {2, 3, 4, 5, 6, 8, 10}, {2, 3,
#>  4, 5, 7, 8, 10}, {2, 3, 4, 6, 7, 8, 10}, {2, 3, 5, 6, 7, 8, 10}, {2,
#>  4, 5, 6, 7, 8, 10}, {3, 4, 5, 6, 7, 8, 10}, {1, 2, 3, 4, 5, 6, 7, 8},
#>  {1, 2, 3, 4, 5, 6, 7, 10}, {1, 2, 3, 4, 5, 6, 8, 10}, {1, 2, 3, 4, 5,
#>  7, 8, 10}, {1, 2, 3, 4, 6, 7, 8, 10}, {1, 2, 3, 5, 6, 7, 8, 10}, {1,
#>  2, 4, 5, 6, 7, 8, 10}, {1, 3, 4, 5, 6, 7, 8, 10}, {2, 3, 4, 5, 6, 7,
#>  8, 10}, {1, 2, 3, 4, 5, 6, 7, 8, 10}}

powerset_of_A |>
  as.list()
#> [[1]]
#> {}
#> 
#> [[2]]
#> {1}
#> 
#> [[3]]
#> {2}
#> 
#> [[4]]
#> {3}
#> 
#> [[5]]
#> {4}
#> 
#> [[6]]
#> {5}
#> 
#> [[7]]
#> {6}
#> 
#> [[8]]
#> {7}
#> 
#> [[9]]
#> {8}
#> 
#> [[10]]
#> {10}
#> 
#> [[11]]
#> {1, 2}
#> 
#> [[12]]
#> {1, 3}
#> 
#> [[13]]
#> {1, 4}
#> 
#> [[14]]
#> {1, 5}
#> 
#> [[15]]
#> {1, 6}
#> 
#> [[16]]
#> {1, 7}
#> 
#> [[17]]
#> {1, 8}
#> 
#> [[18]]
#> {1, 10}
#> 
#> [[19]]
#> {2, 3}
#> 
#> [[20]]
#> {2, 4}
#> 
#> [[21]]
#> {2, 5}
#> 
#> [[22]]
#> {2, 6}
#> 
#> [[23]]
#> {2, 7}
#> 
#> [[24]]
#> {2, 8}
#> 
#> [[25]]
#> {2, 10}
#> 
#> [[26]]
#> {3, 4}
#> 
#> [[27]]
#> {3, 5}
#> 
#> [[28]]
#> {3, 6}
#> 
#> [[29]]
#> {3, 7}
#> 
#> [[30]]
#> {3, 8}
#> 
#> [[31]]
#> {3, 10}
#> 
#> [[32]]
#> {4, 5}
#> 
#> [[33]]
#> {4, 6}
#> 
#> [[34]]
#> {4, 7}
#> 
#> [[35]]
#> {4, 8}
#> 
#> [[36]]
#> {4, 10}
#> 
#> [[37]]
#> {5, 6}
#> 
#> [[38]]
#> {5, 7}
#> 
#> [[39]]
#> {5, 8}
#> 
#> [[40]]
#> {5, 10}
#> 
#> [[41]]
#> {6, 7}
#> 
#> [[42]]
#> {6, 8}
#> 
#> [[43]]
#> {6, 10}
#> 
#> [[44]]
#> {7, 8}
#> 
#> [[45]]
#> {7, 10}
#> 
#> [[46]]
#> {8, 10}
#> 
#> [[47]]
#> {1, 2, 3}
#> 
#> [[48]]
#> {1, 2, 4}
#> 
#> [[49]]
#> {1, 2, 5}
#> 
#> [[50]]
#> {1, 2, 6}
#> 
#> [[51]]
#> {1, 2, 7}
#> 
#> [[52]]
#> {1, 2, 8}
#> 
#> [[53]]
#> {1, 2, 10}
#> 
#> [[54]]
#> {1, 3, 4}
#> 
#> [[55]]
#> {1, 3, 5}
#> 
#> [[56]]
#> {1, 3, 6}
#> 
#> [[57]]
#> {1, 3, 7}
#> 
#> [[58]]
#> {1, 3, 8}
#> 
#> [[59]]
#> {1, 3, 10}
#> 
#> [[60]]
#> {1, 4, 5}
#> 
#> [[61]]
#> {1, 4, 6}
#> 
#> [[62]]
#> {1, 4, 7}
#> 
#> [[63]]
#> {1, 4, 8}
#> 
#> [[64]]
#> {1, 4, 10}
#> 
#> [[65]]
#> {1, 5, 6}
#> 
#> [[66]]
#> {1, 5, 7}
#> 
#> [[67]]
#> {1, 5, 8}
#> 
#> [[68]]
#> {1, 5, 10}
#> 
#> [[69]]
#> {1, 6, 7}
#> 
#> [[70]]
#> {1, 6, 8}
#> 
#> [[71]]
#> {1, 6, 10}
#> 
#> [[72]]
#> {1, 7, 8}
#> 
#> [[73]]
#> {1, 7, 10}
#> 
#> [[74]]
#> {1, 8, 10}
#> 
#> [[75]]
#> {2, 3, 4}
#> 
#> [[76]]
#> {2, 3, 5}
#> 
#> [[77]]
#> {2, 3, 6}
#> 
#> [[78]]
#> {2, 3, 7}
#> 
#> [[79]]
#> {2, 3, 8}
#> 
#> [[80]]
#> {2, 3, 10}
#> 
#> [[81]]
#> {2, 4, 5}
#> 
#> [[82]]
#> {2, 4, 6}
#> 
#> [[83]]
#> {2, 4, 7}
#> 
#> [[84]]
#> {2, 4, 8}
#> 
#> [[85]]
#> {2, 4, 10}
#> 
#> [[86]]
#> {2, 5, 6}
#> 
#> [[87]]
#> {2, 5, 7}
#> 
#> [[88]]
#> {2, 5, 8}
#> 
#> [[89]]
#> {2, 5, 10}
#> 
#> [[90]]
#> {2, 6, 7}
#> 
#> [[91]]
#> {2, 6, 8}
#> 
#> [[92]]
#> {2, 6, 10}
#> 
#> [[93]]
#> {2, 7, 8}
#> 
#> [[94]]
#> {2, 7, 10}
#> 
#> [[95]]
#> {2, 8, 10}
#> 
#> [[96]]
#> {3, 4, 5}
#> 
#> [[97]]
#> {3, 4, 6}
#> 
#> [[98]]
#> {3, 4, 7}
#> 
#> [[99]]
#> {3, 4, 8}
#> 
#> [[100]]
#> {3, 4, 10}
#> 
#> [[101]]
#> {3, 5, 6}
#> 
#> [[102]]
#> {3, 5, 7}
#> 
#> [[103]]
#> {3, 5, 8}
#> 
#> [[104]]
#> {3, 5, 10}
#> 
#> [[105]]
#> {3, 6, 7}
#> 
#> [[106]]
#> {3, 6, 8}
#> 
#> [[107]]
#> {3, 6, 10}
#> 
#> [[108]]
#> {3, 7, 8}
#> 
#> [[109]]
#> {3, 7, 10}
#> 
#> [[110]]
#> {3, 8, 10}
#> 
#> [[111]]
#> {4, 5, 6}
#> 
#> [[112]]
#> {4, 5, 7}
#> 
#> [[113]]
#> {4, 5, 8}
#> 
#> [[114]]
#> {4, 5, 10}
#> 
#> [[115]]
#> {4, 6, 7}
#> 
#> [[116]]
#> {4, 6, 8}
#> 
#> [[117]]
#> {4, 6, 10}
#> 
#> [[118]]
#> {4, 7, 8}
#> 
#> [[119]]
#> {4, 7, 10}
#> 
#> [[120]]
#> {4, 8, 10}
#> 
#> [[121]]
#> {5, 6, 7}
#> 
#> [[122]]
#> {5, 6, 8}
#> 
#> [[123]]
#> {5, 6, 10}
#> 
#> [[124]]
#> {5, 7, 8}
#> 
#> [[125]]
#> {5, 7, 10}
#> 
#> [[126]]
#> {5, 8, 10}
#> 
#> [[127]]
#> {6, 7, 8}
#> 
#> [[128]]
#> {6, 7, 10}
#> 
#> [[129]]
#> {6, 8, 10}
#> 
#> [[130]]
#> {7, 8, 10}
#> 
#> [[131]]
#> {1, 2, 3, 4}
#> 
#> [[132]]
#> {1, 2, 3, 5}
#> 
#> [[133]]
#> {1, 2, 3, 6}
#> 
#> [[134]]
#> {1, 2, 3, 7}
#> 
#> [[135]]
#> {1, 2, 3, 8}
#> 
#> [[136]]
#> {1, 2, 3, 10}
#> 
#> [[137]]
#> {1, 2, 4, 5}
#> 
#> [[138]]
#> {1, 2, 4, 6}
#> 
#> [[139]]
#> {1, 2, 4, 7}
#> 
#> [[140]]
#> {1, 2, 4, 8}
#> 
#> [[141]]
#> {1, 2, 4, 10}
#> 
#> [[142]]
#> {1, 2, 5, 6}
#> 
#> [[143]]
#> {1, 2, 5, 7}
#> 
#> [[144]]
#> {1, 2, 5, 8}
#> 
#> [[145]]
#> {1, 2, 5, 10}
#> 
#> [[146]]
#> {1, 2, 6, 7}
#> 
#> [[147]]
#> {1, 2, 6, 8}
#> 
#> [[148]]
#> {1, 2, 6, 10}
#> 
#> [[149]]
#> {1, 2, 7, 8}
#> 
#> [[150]]
#> {1, 2, 7, 10}
#> 
#> [[151]]
#> {1, 2, 8, 10}
#> 
#> [[152]]
#> {1, 3, 4, 5}
#> 
#> [[153]]
#> {1, 3, 4, 6}
#> 
#> [[154]]
#> {1, 3, 4, 7}
#> 
#> [[155]]
#> {1, 3, 4, 8}
#> 
#> [[156]]
#> {1, 3, 4, 10}
#> 
#> [[157]]
#> {1, 3, 5, 6}
#> 
#> [[158]]
#> {1, 3, 5, 7}
#> 
#> [[159]]
#> {1, 3, 5, 8}
#> 
#> [[160]]
#> {1, 3, 5, 10}
#> 
#> [[161]]
#> {1, 3, 6, 7}
#> 
#> [[162]]
#> {1, 3, 6, 8}
#> 
#> [[163]]
#> {1, 3, 6, 10}
#> 
#> [[164]]
#> {1, 3, 7, 8}
#> 
#> [[165]]
#> {1, 3, 7, 10}
#> 
#> [[166]]
#> {1, 3, 8, 10}
#> 
#> [[167]]
#> {1, 4, 5, 6}
#> 
#> [[168]]
#> {1, 4, 5, 7}
#> 
#> [[169]]
#> {1, 4, 5, 8}
#> 
#> [[170]]
#> {1, 4, 5, 10}
#> 
#> [[171]]
#> {1, 4, 6, 7}
#> 
#> [[172]]
#> {1, 4, 6, 8}
#> 
#> [[173]]
#> {1, 4, 6, 10}
#> 
#> [[174]]
#> {1, 4, 7, 8}
#> 
#> [[175]]
#> {1, 4, 7, 10}
#> 
#> [[176]]
#> {1, 4, 8, 10}
#> 
#> [[177]]
#> {1, 5, 6, 7}
#> 
#> [[178]]
#> {1, 5, 6, 8}
#> 
#> [[179]]
#> {1, 5, 6, 10}
#> 
#> [[180]]
#> {1, 5, 7, 8}
#> 
#> [[181]]
#> {1, 5, 7, 10}
#> 
#> [[182]]
#> {1, 5, 8, 10}
#> 
#> [[183]]
#> {1, 6, 7, 8}
#> 
#> [[184]]
#> {1, 6, 7, 10}
#> 
#> [[185]]
#> {1, 6, 8, 10}
#> 
#> [[186]]
#> {1, 7, 8, 10}
#> 
#> [[187]]
#> {2, 3, 4, 5}
#> 
#> [[188]]
#> {2, 3, 4, 6}
#> 
#> [[189]]
#> {2, 3, 4, 7}
#> 
#> [[190]]
#> {2, 3, 4, 8}
#> 
#> [[191]]
#> {2, 3, 4, 10}
#> 
#> [[192]]
#> {2, 3, 5, 6}
#> 
#> [[193]]
#> {2, 3, 5, 7}
#> 
#> [[194]]
#> {2, 3, 5, 8}
#> 
#> [[195]]
#> {2, 3, 5, 10}
#> 
#> [[196]]
#> {2, 3, 6, 7}
#> 
#> [[197]]
#> {2, 3, 6, 8}
#> 
#> [[198]]
#> {2, 3, 6, 10}
#> 
#> [[199]]
#> {2, 3, 7, 8}
#> 
#> [[200]]
#> {2, 3, 7, 10}
#> 
#> [[201]]
#> {2, 3, 8, 10}
#> 
#> [[202]]
#> {2, 4, 5, 6}
#> 
#> [[203]]
#> {2, 4, 5, 7}
#> 
#> [[204]]
#> {2, 4, 5, 8}
#> 
#> [[205]]
#> {2, 4, 5, 10}
#> 
#> [[206]]
#> {2, 4, 6, 7}
#> 
#> [[207]]
#> {2, 4, 6, 8}
#> 
#> [[208]]
#> {2, 4, 6, 10}
#> 
#> [[209]]
#> {2, 4, 7, 8}
#> 
#> [[210]]
#> {2, 4, 7, 10}
#> 
#> [[211]]
#> {2, 4, 8, 10}
#> 
#> [[212]]
#> {2, 5, 6, 7}
#> 
#> [[213]]
#> {2, 5, 6, 8}
#> 
#> [[214]]
#> {2, 5, 6, 10}
#> 
#> [[215]]
#> {2, 5, 7, 8}
#> 
#> [[216]]
#> {2, 5, 7, 10}
#> 
#> [[217]]
#> {2, 5, 8, 10}
#> 
#> [[218]]
#> {2, 6, 7, 8}
#> 
#> [[219]]
#> {2, 6, 7, 10}
#> 
#> [[220]]
#> {2, 6, 8, 10}
#> 
#> [[221]]
#> {2, 7, 8, 10}
#> 
#> [[222]]
#> {3, 4, 5, 6}
#> 
#> [[223]]
#> {3, 4, 5, 7}
#> 
#> [[224]]
#> {3, 4, 5, 8}
#> 
#> [[225]]
#> {3, 4, 5, 10}
#> 
#> [[226]]
#> {3, 4, 6, 7}
#> 
#> [[227]]
#> {3, 4, 6, 8}
#> 
#> [[228]]
#> {3, 4, 6, 10}
#> 
#> [[229]]
#> {3, 4, 7, 8}
#> 
#> [[230]]
#> {3, 4, 7, 10}
#> 
#> [[231]]
#> {3, 4, 8, 10}
#> 
#> [[232]]
#> {3, 5, 6, 7}
#> 
#> [[233]]
#> {3, 5, 6, 8}
#> 
#> [[234]]
#> {3, 5, 6, 10}
#> 
#> [[235]]
#> {3, 5, 7, 8}
#> 
#> [[236]]
#> {3, 5, 7, 10}
#> 
#> [[237]]
#> {3, 5, 8, 10}
#> 
#> [[238]]
#> {3, 6, 7, 8}
#> 
#> [[239]]
#> {3, 6, 7, 10}
#> 
#> [[240]]
#> {3, 6, 8, 10}
#> 
#> [[241]]
#> {3, 7, 8, 10}
#> 
#> [[242]]
#> {4, 5, 6, 7}
#> 
#> [[243]]
#> {4, 5, 6, 8}
#> 
#> [[244]]
#> {4, 5, 6, 10}
#> 
#> [[245]]
#> {4, 5, 7, 8}
#> 
#> [[246]]
#> {4, 5, 7, 10}
#> 
#> [[247]]
#> {4, 5, 8, 10}
#> 
#> [[248]]
#> {4, 6, 7, 8}
#> 
#> [[249]]
#> {4, 6, 7, 10}
#> 
#> [[250]]
#> {4, 6, 8, 10}
#> 
#> [[251]]
#> {4, 7, 8, 10}
#> 
#> [[252]]
#> {5, 6, 7, 8}
#> 
#> [[253]]
#> {5, 6, 7, 10}
#> 
#> [[254]]
#> {5, 6, 8, 10}
#> 
#> [[255]]
#> {5, 7, 8, 10}
#> 
#> [[256]]
#> {6, 7, 8, 10}
#> 
#> [[257]]
#> {1, 2, 3, 4, 5}
#> 
#> [[258]]
#> {1, 2, 3, 4, 6}
#> 
#> [[259]]
#> {1, 2, 3, 4, 7}
#> 
#> [[260]]
#> {1, 2, 3, 4, 8}
#> 
#> [[261]]
#> {1, 2, 3, 4, 10}
#> 
#> [[262]]
#> {1, 2, 3, 5, 6}
#> 
#> [[263]]
#> {1, 2, 3, 5, 7}
#> 
#> [[264]]
#> {1, 2, 3, 5, 8}
#> 
#> [[265]]
#> {1, 2, 3, 5, 10}
#> 
#> [[266]]
#> {1, 2, 3, 6, 7}
#> 
#> [[267]]
#> {1, 2, 3, 6, 8}
#> 
#> [[268]]
#> {1, 2, 3, 6, 10}
#> 
#> [[269]]
#> {1, 2, 3, 7, 8}
#> 
#> [[270]]
#> {1, 2, 3, 7, 10}
#> 
#> [[271]]
#> {1, 2, 3, 8, 10}
#> 
#> [[272]]
#> {1, 2, 4, 5, 6}
#> 
#> [[273]]
#> {1, 2, 4, 5, 7}
#> 
#> [[274]]
#> {1, 2, 4, 5, 8}
#> 
#> [[275]]
#> {1, 2, 4, 5, 10}
#> 
#> [[276]]
#> {1, 2, 4, 6, 7}
#> 
#> [[277]]
#> {1, 2, 4, 6, 8}
#> 
#> [[278]]
#> {1, 2, 4, 6, 10}
#> 
#> [[279]]
#> {1, 2, 4, 7, 8}
#> 
#> [[280]]
#> {1, 2, 4, 7, 10}
#> 
#> [[281]]
#> {1, 2, 4, 8, 10}
#> 
#> [[282]]
#> {1, 2, 5, 6, 7}
#> 
#> [[283]]
#> {1, 2, 5, 6, 8}
#> 
#> [[284]]
#> {1, 2, 5, 6, 10}
#> 
#> [[285]]
#> {1, 2, 5, 7, 8}
#> 
#> [[286]]
#> {1, 2, 5, 7, 10}
#> 
#> [[287]]
#> {1, 2, 5, 8, 10}
#> 
#> [[288]]
#> {1, 2, 6, 7, 8}
#> 
#> [[289]]
#> {1, 2, 6, 7, 10}
#> 
#> [[290]]
#> {1, 2, 6, 8, 10}
#> 
#> [[291]]
#> {1, 2, 7, 8, 10}
#> 
#> [[292]]
#> {1, 3, 4, 5, 6}
#> 
#> [[293]]
#> {1, 3, 4, 5, 7}
#> 
#> [[294]]
#> {1, 3, 4, 5, 8}
#> 
#> [[295]]
#> {1, 3, 4, 5, 10}
#> 
#> [[296]]
#> {1, 3, 4, 6, 7}
#> 
#> [[297]]
#> {1, 3, 4, 6, 8}
#> 
#> [[298]]
#> {1, 3, 4, 6, 10}
#> 
#> [[299]]
#> {1, 3, 4, 7, 8}
#> 
#> [[300]]
#> {1, 3, 4, 7, 10}
#> 
#> [[301]]
#> {1, 3, 4, 8, 10}
#> 
#> [[302]]
#> {1, 3, 5, 6, 7}
#> 
#> [[303]]
#> {1, 3, 5, 6, 8}
#> 
#> [[304]]
#> {1, 3, 5, 6, 10}
#> 
#> [[305]]
#> {1, 3, 5, 7, 8}
#> 
#> [[306]]
#> {1, 3, 5, 7, 10}
#> 
#> [[307]]
#> {1, 3, 5, 8, 10}
#> 
#> [[308]]
#> {1, 3, 6, 7, 8}
#> 
#> [[309]]
#> {1, 3, 6, 7, 10}
#> 
#> [[310]]
#> {1, 3, 6, 8, 10}
#> 
#> [[311]]
#> {1, 3, 7, 8, 10}
#> 
#> [[312]]
#> {1, 4, 5, 6, 7}
#> 
#> [[313]]
#> {1, 4, 5, 6, 8}
#> 
#> [[314]]
#> {1, 4, 5, 6, 10}
#> 
#> [[315]]
#> {1, 4, 5, 7, 8}
#> 
#> [[316]]
#> {1, 4, 5, 7, 10}
#> 
#> [[317]]
#> {1, 4, 5, 8, 10}
#> 
#> [[318]]
#> {1, 4, 6, 7, 8}
#> 
#> [[319]]
#> {1, 4, 6, 7, 10}
#> 
#> [[320]]
#> {1, 4, 6, 8, 10}
#> 
#> [[321]]
#> {1, 4, 7, 8, 10}
#> 
#> [[322]]
#> {1, 5, 6, 7, 8}
#> 
#> [[323]]
#> {1, 5, 6, 7, 10}
#> 
#> [[324]]
#> {1, 5, 6, 8, 10}
#> 
#> [[325]]
#> {1, 5, 7, 8, 10}
#> 
#> [[326]]
#> {1, 6, 7, 8, 10}
#> 
#> [[327]]
#> {2, 3, 4, 5, 6}
#> 
#> [[328]]
#> {2, 3, 4, 5, 7}
#> 
#> [[329]]
#> {2, 3, 4, 5, 8}
#> 
#> [[330]]
#> {2, 3, 4, 5, 10}
#> 
#> [[331]]
#> {2, 3, 4, 6, 7}
#> 
#> [[332]]
#> {2, 3, 4, 6, 8}
#> 
#> [[333]]
#> {2, 3, 4, 6, 10}
#> 
#> [[334]]
#> {2, 3, 4, 7, 8}
#> 
#> [[335]]
#> {2, 3, 4, 7, 10}
#> 
#> [[336]]
#> {2, 3, 4, 8, 10}
#> 
#> [[337]]
#> {2, 3, 5, 6, 7}
#> 
#> [[338]]
#> {2, 3, 5, 6, 8}
#> 
#> [[339]]
#> {2, 3, 5, 6, 10}
#> 
#> [[340]]
#> {2, 3, 5, 7, 8}
#> 
#> [[341]]
#> {2, 3, 5, 7, 10}
#> 
#> [[342]]
#> {2, 3, 5, 8, 10}
#> 
#> [[343]]
#> {2, 3, 6, 7, 8}
#> 
#> [[344]]
#> {2, 3, 6, 7, 10}
#> 
#> [[345]]
#> {2, 3, 6, 8, 10}
#> 
#> [[346]]
#> {2, 3, 7, 8, 10}
#> 
#> [[347]]
#> {2, 4, 5, 6, 7}
#> 
#> [[348]]
#> {2, 4, 5, 6, 8}
#> 
#> [[349]]
#> {2, 4, 5, 6, 10}
#> 
#> [[350]]
#> {2, 4, 5, 7, 8}
#> 
#> [[351]]
#> {2, 4, 5, 7, 10}
#> 
#> [[352]]
#> {2, 4, 5, 8, 10}
#> 
#> [[353]]
#> {2, 4, 6, 7, 8}
#> 
#> [[354]]
#> {2, 4, 6, 7, 10}
#> 
#> [[355]]
#> {2, 4, 6, 8, 10}
#> 
#> [[356]]
#> {2, 4, 7, 8, 10}
#> 
#> [[357]]
#> {2, 5, 6, 7, 8}
#> 
#> [[358]]
#> {2, 5, 6, 7, 10}
#> 
#> [[359]]
#> {2, 5, 6, 8, 10}
#> 
#> [[360]]
#> {2, 5, 7, 8, 10}
#> 
#> [[361]]
#> {2, 6, 7, 8, 10}
#> 
#> [[362]]
#> {3, 4, 5, 6, 7}
#> 
#> [[363]]
#> {3, 4, 5, 6, 8}
#> 
#> [[364]]
#> {3, 4, 5, 6, 10}
#> 
#> [[365]]
#> {3, 4, 5, 7, 8}
#> 
#> [[366]]
#> {3, 4, 5, 7, 10}
#> 
#> [[367]]
#> {3, 4, 5, 8, 10}
#> 
#> [[368]]
#> {3, 4, 6, 7, 8}
#> 
#> [[369]]
#> {3, 4, 6, 7, 10}
#> 
#> [[370]]
#> {3, 4, 6, 8, 10}
#> 
#> [[371]]
#> {3, 4, 7, 8, 10}
#> 
#> [[372]]
#> {3, 5, 6, 7, 8}
#> 
#> [[373]]
#> {3, 5, 6, 7, 10}
#> 
#> [[374]]
#> {3, 5, 6, 8, 10}
#> 
#> [[375]]
#> {3, 5, 7, 8, 10}
#> 
#> [[376]]
#> {3, 6, 7, 8, 10}
#> 
#> [[377]]
#> {4, 5, 6, 7, 8}
#> 
#> [[378]]
#> {4, 5, 6, 7, 10}
#> 
#> [[379]]
#> {4, 5, 6, 8, 10}
#> 
#> [[380]]
#> {4, 5, 7, 8, 10}
#> 
#> [[381]]
#> {4, 6, 7, 8, 10}
#> 
#> [[382]]
#> {5, 6, 7, 8, 10}
#> 
#> [[383]]
#> {1, 2, 3, 4, 5, 6}
#> 
#> [[384]]
#> {1, 2, 3, 4, 5, 7}
#> 
#> [[385]]
#> {1, 2, 3, 4, 5, 8}
#> 
#> [[386]]
#> {1, 2, 3, 4, 5, 10}
#> 
#> [[387]]
#> {1, 2, 3, 4, 6, 7}
#> 
#> [[388]]
#> {1, 2, 3, 4, 6, 8}
#> 
#> [[389]]
#> {1, 2, 3, 4, 6, 10}
#> 
#> [[390]]
#> {1, 2, 3, 4, 7, 8}
#> 
#> [[391]]
#> {1, 2, 3, 4, 7, 10}
#> 
#> [[392]]
#> {1, 2, 3, 4, 8, 10}
#> 
#> [[393]]
#> {1, 2, 3, 5, 6, 7}
#> 
#> [[394]]
#> {1, 2, 3, 5, 6, 8}
#> 
#> [[395]]
#> {1, 2, 3, 5, 6, 10}
#> 
#> [[396]]
#> {1, 2, 3, 5, 7, 8}
#> 
#> [[397]]
#> {1, 2, 3, 5, 7, 10}
#> 
#> [[398]]
#> {1, 2, 3, 5, 8, 10}
#> 
#> [[399]]
#> {1, 2, 3, 6, 7, 8}
#> 
#> [[400]]
#> {1, 2, 3, 6, 7, 10}
#> 
#> [[401]]
#> {1, 2, 3, 6, 8, 10}
#> 
#> [[402]]
#> {1, 2, 3, 7, 8, 10}
#> 
#> [[403]]
#> {1, 2, 4, 5, 6, 7}
#> 
#> [[404]]
#> {1, 2, 4, 5, 6, 8}
#> 
#> [[405]]
#> {1, 2, 4, 5, 6, 10}
#> 
#> [[406]]
#> {1, 2, 4, 5, 7, 8}
#> 
#> [[407]]
#> {1, 2, 4, 5, 7, 10}
#> 
#> [[408]]
#> {1, 2, 4, 5, 8, 10}
#> 
#> [[409]]
#> {1, 2, 4, 6, 7, 8}
#> 
#> [[410]]
#> {1, 2, 4, 6, 7, 10}
#> 
#> [[411]]
#> {1, 2, 4, 6, 8, 10}
#> 
#> [[412]]
#> {1, 2, 4, 7, 8, 10}
#> 
#> [[413]]
#> {1, 2, 5, 6, 7, 8}
#> 
#> [[414]]
#> {1, 2, 5, 6, 7, 10}
#> 
#> [[415]]
#> {1, 2, 5, 6, 8, 10}
#> 
#> [[416]]
#> {1, 2, 5, 7, 8, 10}
#> 
#> [[417]]
#> {1, 2, 6, 7, 8, 10}
#> 
#> [[418]]
#> {1, 3, 4, 5, 6, 7}
#> 
#> [[419]]
#> {1, 3, 4, 5, 6, 8}
#> 
#> [[420]]
#> {1, 3, 4, 5, 6, 10}
#> 
#> [[421]]
#> {1, 3, 4, 5, 7, 8}
#> 
#> [[422]]
#> {1, 3, 4, 5, 7, 10}
#> 
#> [[423]]
#> {1, 3, 4, 5, 8, 10}
#> 
#> [[424]]
#> {1, 3, 4, 6, 7, 8}
#> 
#> [[425]]
#> {1, 3, 4, 6, 7, 10}
#> 
#> [[426]]
#> {1, 3, 4, 6, 8, 10}
#> 
#> [[427]]
#> {1, 3, 4, 7, 8, 10}
#> 
#> [[428]]
#> {1, 3, 5, 6, 7, 8}
#> 
#> [[429]]
#> {1, 3, 5, 6, 7, 10}
#> 
#> [[430]]
#> {1, 3, 5, 6, 8, 10}
#> 
#> [[431]]
#> {1, 3, 5, 7, 8, 10}
#> 
#> [[432]]
#> {1, 3, 6, 7, 8, 10}
#> 
#> [[433]]
#> {1, 4, 5, 6, 7, 8}
#> 
#> [[434]]
#> {1, 4, 5, 6, 7, 10}
#> 
#> [[435]]
#> {1, 4, 5, 6, 8, 10}
#> 
#> [[436]]
#> {1, 4, 5, 7, 8, 10}
#> 
#> [[437]]
#> {1, 4, 6, 7, 8, 10}
#> 
#> [[438]]
#> {1, 5, 6, 7, 8, 10}
#> 
#> [[439]]
#> {2, 3, 4, 5, 6, 7}
#> 
#> [[440]]
#> {2, 3, 4, 5, 6, 8}
#> 
#> [[441]]
#> {2, 3, 4, 5, 6, 10}
#> 
#> [[442]]
#> {2, 3, 4, 5, 7, 8}
#> 
#> [[443]]
#> {2, 3, 4, 5, 7, 10}
#> 
#> [[444]]
#> {2, 3, 4, 5, 8, 10}
#> 
#> [[445]]
#> {2, 3, 4, 6, 7, 8}
#> 
#> [[446]]
#> {2, 3, 4, 6, 7, 10}
#> 
#> [[447]]
#> {2, 3, 4, 6, 8, 10}
#> 
#> [[448]]
#> {2, 3, 4, 7, 8, 10}
#> 
#> [[449]]
#> {2, 3, 5, 6, 7, 8}
#> 
#> [[450]]
#> {2, 3, 5, 6, 7, 10}
#> 
#> [[451]]
#> {2, 3, 5, 6, 8, 10}
#> 
#> [[452]]
#> {2, 3, 5, 7, 8, 10}
#> 
#> [[453]]
#> {2, 3, 6, 7, 8, 10}
#> 
#> [[454]]
#> {2, 4, 5, 6, 7, 8}
#> 
#> [[455]]
#> {2, 4, 5, 6, 7, 10}
#> 
#> [[456]]
#> {2, 4, 5, 6, 8, 10}
#> 
#> [[457]]
#> {2, 4, 5, 7, 8, 10}
#> 
#> [[458]]
#> {2, 4, 6, 7, 8, 10}
#> 
#> [[459]]
#> {2, 5, 6, 7, 8, 10}
#> 
#> [[460]]
#> {3, 4, 5, 6, 7, 8}
#> 
#> [[461]]
#> {3, 4, 5, 6, 7, 10}
#> 
#> [[462]]
#> {3, 4, 5, 6, 8, 10}
#> 
#> [[463]]
#> {3, 4, 5, 7, 8, 10}
#> 
#> [[464]]
#> {3, 4, 6, 7, 8, 10}
#> 
#> [[465]]
#> {3, 5, 6, 7, 8, 10}
#> 
#> [[466]]
#> {4, 5, 6, 7, 8, 10}
#> 
#> [[467]]
#> {1, 2, 3, 4, 5, 6, 7}
#> 
#> [[468]]
#> {1, 2, 3, 4, 5, 6, 8}
#> 
#> [[469]]
#> {1, 2, 3, 4, 5, 6, 10}
#> 
#> [[470]]
#> {1, 2, 3, 4, 5, 7, 8}
#> 
#> [[471]]
#> {1, 2, 3, 4, 5, 7, 10}
#> 
#> [[472]]
#> {1, 2, 3, 4, 5, 8, 10}
#> 
#> [[473]]
#> {1, 2, 3, 4, 6, 7, 8}
#> 
#> [[474]]
#> {1, 2, 3, 4, 6, 7, 10}
#> 
#> [[475]]
#> {1, 2, 3, 4, 6, 8, 10}
#> 
#> [[476]]
#> {1, 2, 3, 4, 7, 8, 10}
#> 
#> [[477]]
#> {1, 2, 3, 5, 6, 7, 8}
#> 
#> [[478]]
#> {1, 2, 3, 5, 6, 7, 10}
#> 
#> [[479]]
#> {1, 2, 3, 5, 6, 8, 10}
#> 
#> [[480]]
#> {1, 2, 3, 5, 7, 8, 10}
#> 
#> [[481]]
#> {1, 2, 3, 6, 7, 8, 10}
#> 
#> [[482]]
#> {1, 2, 4, 5, 6, 7, 8}
#> 
#> [[483]]
#> {1, 2, 4, 5, 6, 7, 10}
#> 
#> [[484]]
#> {1, 2, 4, 5, 6, 8, 10}
#> 
#> [[485]]
#> {1, 2, 4, 5, 7, 8, 10}
#> 
#> [[486]]
#> {1, 2, 4, 6, 7, 8, 10}
#> 
#> [[487]]
#> {1, 2, 5, 6, 7, 8, 10}
#> 
#> [[488]]
#> {1, 3, 4, 5, 6, 7, 8}
#> 
#> [[489]]
#> {1, 3, 4, 5, 6, 7, 10}
#> 
#> [[490]]
#> {1, 3, 4, 5, 6, 8, 10}
#> 
#> [[491]]
#> {1, 3, 4, 5, 7, 8, 10}
#> 
#> [[492]]
#> {1, 3, 4, 6, 7, 8, 10}
#> 
#> [[493]]
#> {1, 3, 5, 6, 7, 8, 10}
#> 
#> [[494]]
#> {1, 4, 5, 6, 7, 8, 10}
#> 
#> [[495]]
#> {2, 3, 4, 5, 6, 7, 8}
#> 
#> [[496]]
#> {2, 3, 4, 5, 6, 7, 10}
#> 
#> [[497]]
#> {2, 3, 4, 5, 6, 8, 10}
#> 
#> [[498]]
#> {2, 3, 4, 5, 7, 8, 10}
#> 
#> [[499]]
#> {2, 3, 4, 6, 7, 8, 10}
#> 
#> [[500]]
#> {2, 3, 5, 6, 7, 8, 10}
#> 
#> [[501]]
#> {2, 4, 5, 6, 7, 8, 10}
#> 
#> [[502]]
#> {3, 4, 5, 6, 7, 8, 10}
#> 
#> [[503]]
#> {1, 2, 3, 4, 5, 6, 7, 8}
#> 
#> [[504]]
#> {1, 2, 3, 4, 5, 6, 7, 10}
#> 
#> [[505]]
#> {1, 2, 3, 4, 5, 6, 8, 10}
#> 
#> [[506]]
#> {1, 2, 3, 4, 5, 7, 8, 10}
#> 
#> [[507]]
#> {1, 2, 3, 4, 6, 7, 8, 10}
#> 
#> [[508]]
#> {1, 2, 3, 5, 6, 7, 8, 10}
#> 
#> [[509]]
#> {1, 2, 4, 5, 6, 7, 8, 10}
#> 
#> [[510]]
#> {1, 3, 4, 5, 6, 7, 8, 10}
#> 
#> [[511]]
#> {2, 3, 4, 5, 6, 7, 8, 10}
#> 
#> [[512]]
#> {1, 2, 3, 4, 5, 6, 7, 8, 10}
e5nqia27

e5nqia273#

我认为你看到的输出是一个截断的版本。这是因为R试图在控制台中显示对象的用户友好表示,而不会压倒显示。
要获得完整的输出,也许你可以将powerset转换为列表,然后单独打印每个子集。
下面是一个简单的例子:

library(sets)

A = set(1, 2, 3, 4, 5, 6, 7, 8, 10)
powerset_of_A = set_power(A)

# Convert to a list and print each subset
list_of_subsets <- as.list(powerset_of_A)
for(subset in list_of_subsets) {
  print(subset)
}

运行上面的代码将分别打印每个子集,从而确保您看到完整的powerset而不会被截断。

相关问题