R -如何基于相关矩阵而不是原始数据运行回归?

drnojrws  于 2023-11-14  发布在  其他
关注(0)|答案(1)|浏览(136)

我想基于相关矩阵而不是原始数据运行回归。我看过this post,但无法理解它。我如何在R中做到这一点?
下面是一些代码:

  1. #Correlation matrix.
  2. MyMatrix <- matrix(
  3. c(1.0, 0.1, 0.5, 0.4,
  4. 0.1, 1.0, 0.9, 0.3,
  5. 0.5, 0.9, 1.0, 0.3,
  6. 0.4, 0.3, 0.3, 1.0),
  7. nrow=4,
  8. ncol=4)
  9. df <- as.data.frame(MyMatrix)
  10. colnames(df)[colnames(df)=="V1"] <- "a"
  11. colnames(df)[colnames(df)=="V2"] <- "b"
  12. colnames(df)[colnames(df)=="V3"] <- "c"
  13. colnames(df)[colnames(df)=="V4"] <- "d"
  14. #Assume means and standard deviations as follows:
  15. MEAN.a <- 4.00
  16. MEAN.b <- 3.90
  17. MEAN.c <- 4.10
  18. MEAN.d <- 5.00
  19. SD.a <- 1.01
  20. SD.b <- 0.95
  21. SD.c <- 0.99
  22. SD.d <- 2.20
  23. #Run model [UNSURE ABOUT THIS PART]
  24. library(lavaan)
  25. m1 <- 'd ~ a + b + c'
  26. fit <- sem(m1, ????)
  27. summary(fit, standardize=TRUE)

字符串

1mrurvl1

1mrurvl11#

这应该就可以了。首先,你可以将相关矩阵转换为协方差矩阵:

  1. MyMatrix <- matrix(
  2. c(1.0, 0.1, 0.5, 0.4,
  3. 0.1, 1.0, 0.9, 0.3,
  4. 0.5, 0.9, 1.0, 0.3,
  5. 0.4, 0.3, 0.3, 1.0),
  6. nrow=4,
  7. ncol=4)
  8. rownames(MyMatrix) <- colnames(MyMatrix) <- c("a", "b","c","d")
  9. #Assume the following means and standard deviations:
  10. MEAN.a <- 4.00
  11. MEAN.b <- 3.90
  12. MEAN.c <- 4.10
  13. MEAN.d <- 5.00
  14. SD.a <- 1.01
  15. SD.b <- 0.95
  16. SD.c <- 0.99
  17. SD.d <- 2.20
  18. s <- c(SD.a, SD.b, SD.c, SD.d)
  19. m <- c(MEAN.a, MEAN.b, MEAN.c, MEAN.d)
  20. cov.mat <- diag(s) %*% MyMatrix %*% diag(s)
  21. rownames(cov.mat) <- colnames(cov.mat) <- rownames(MyMatrix)
  22. names(m) <- rownames(MyMatrix)

字符串
然后,你可以使用lavaan来沿着你在问题中提到的帖子来估计模型。注意,你需要提供大量的观测值来获得样本估计值。我在例子中使用了100,但是如果这没有意义,你可能想改变它。

  1. library(lavaan)
  2. m1 <- 'd ~ a + b + c'
  3. fit <- sem(m1,
  4. sample.cov = cov.mat,
  5. sample.nobs=100,
  6. sample.mean=m,
  7. meanstructure=TRUE)
  8. summary(fit, standardize=TRUE)
  9. # lavaan 0.6-6 ended normally after 44 iterations
  10. #
  11. # Estimator ML
  12. # Optimization method NLMINB
  13. # Number of free parameters 5
  14. #
  15. # Number of observations 100
  16. #
  17. # Model Test User Model:
  18. #
  19. # Test statistic 0.000
  20. # Degrees of freedom 0
  21. #
  22. # Parameter Estimates:
  23. #
  24. # Standard errors Standard
  25. # Information Expected
  26. # Information saturated (h1) model Structured
  27. #
  28. # Regressions:
  29. # Estimate Std.Err z-value P(>|z|) Std.lv Std.all
  30. # d ~
  31. # a 6.317 0.095 66.531 0.000 6.317 2.900
  32. # b 12.737 0.201 63.509 0.000 12.737 5.500
  33. # c -13.556 0.221 -61.307 0.000 -13.556 -6.100
  34. #
  35. # Intercepts:
  36. # Estimate Std.Err z-value P(>|z|) Std.lv Std.all
  37. # .d -14.363 0.282 -50.850 0.000 -14.363 -6.562
  38. #
  39. # Variances:
  40. # Estimate Std.Err z-value P(>|z|) Std.lv Std.all
  41. # .d 0.096 0.014 7.071 0.000 0.096 0.020
  42. #
  43. #

展开查看全部

相关问题