我有一个快速排序的算法,我试图计算其中的比较次数。它使用一个随机生成的数组,大小为10、100、1000和10,000,并有一个常数种子。因此每次都会在数组中生成相同的值。(因此,可以预先确定结果并进行比较,以检查计数是否正确)。我得到的值分别是13、147、1506和11014。我所期望的是25、630、10292和132882。
/**
* @file quicksort.hpp
*/
#ifndef QUICKSORT_H
#define QUICKSORT_H
#include <algorithm>
static const int MIN_SIZE = 10; // Smallest size of an array that quicksort will sort
/**
* Sorts the items in an array into ascending order.
* @pre None.
* @post theArray is sorted into ascending order; n is unchanged.
* @param theArray The given array.
* @param first The first element to consider in theArray.
* @param last The last element to consider in theArray.
* @return the number of comparisons
*/
template<class ItemType>
int insertionSort(ItemType theArray[], int first, int last) {
int counter = 0;
for (int unsorted = first + 1; unsorted <= last; unsorted++) {
ItemType nextItem = theArray[unsorted];
int loc = unsorted;
while ((loc > first) && (counter++, theArray[loc - 1] > nextItem)) {
theArray[loc] = theArray[loc - 1];
loc--;
}
theArray[loc] = nextItem;
}
return counter;
}
/**
* Arranges two specified array entries into sorted order by
* exchanging them, if necessary.
* @param theArray The given array.
* @param i The index of the first entry to consider in theArray.
* @param j The index of the second entry to consider in theArray.
* */
template<class ItemType>
void order(ItemType theArray[], int i, int j) {
if (theArray[i] > theArray[j]) {
std::swap(theArray[i], theArray[j]);
}
}
/**
* Arranges the first, middle, and last entry in an array in sorted order.
* @pre theArray[first..last] is an array; first <= last.
* @post theArray[first..last] is is arranged so that its
* first, middle, and last entries are in sorted order.
* @param theArray The given array.
* @param first The first entry to consider in theArray.
* @param last The last entry to consider in theArray.
* @return The index of the middle entry.
*/
template<class ItemType>
int sortFirstMiddleLast(ItemType theArray[], int first, int last) {
int mid = first + (last - first) / 2;
order(theArray, first, mid); // Make theArray[first] <= theArray[mid]
order(theArray, mid, last); // Make theArray[mid] <= theArray[last]
order(theArray, first, mid); // Make theArray[first] <= theArray[mid]
return mid;
}
/**
* Partitions the entries in an array about a pivot entry for quicksort.
* @pre theArray[first..last] is an array; first <= last.
* @post theArray[first..last] is partitioned such that:
* S1 = theArray[first..pivotIndex-1] <= pivot * theArray[pivotIndex] == pivot
* S2 = theArray[pivotIndex+1..last] >= pivot
* @param theArray The given array.
* @param first The first entry to consider in theArray.
* @param last The last entry to consider in theArray.
* @return The index of the pivot.
*/
template<class ItemType>
int partition(ItemType theArray[], int first, int last, int counter) {
// Choose pivot using median-of-three selection
int pivotIndex = sortFirstMiddleLast(theArray, first, last);
// Reposition pivot so it is last in the array
std::swap(theArray[pivotIndex], theArray[last - 1]);
pivotIndex = last - 1;
ItemType pivot = theArray[pivotIndex];
// Determine the regions S1 and S2
int indexFromLeft = first + 1;
int indexFromRight = last - 2;
bool done = false;
while (!done) {
// Locate first entry on left that is >= pivot
while (counter++, theArray[indexFromLeft] < pivot) {
indexFromLeft = indexFromLeft + 1;
}
// Locate first entry on right that is <= pivot
while (counter++, theArray[indexFromRight] > pivot) {
indexFromRight = indexFromRight - 1;
}
if (indexFromLeft < indexFromRight) {
std::swap(theArray[indexFromLeft], theArray[indexFromRight]);
indexFromLeft = indexFromLeft + 1;
indexFromRight = indexFromRight - 1;
}
else {
done = true;
}
}
// Place pivot in proper position between S1 and S2, and mark its new location
std::swap(theArray[pivotIndex], theArray[indexFromLeft]);
pivotIndex = indexFromLeft;
counter++;
return pivotIndex;
}
/**
* Sorts an array into ascending order. Uses the quick sort with
* median-of-three pivot selection for arrays of at least MIN_SIZE
* entries, and uses the insertion sort for other arrays.
* @pre theArray[first..last] is an array.
* @post theArray[first..last] is sorted.
* @param theArray The given array.
* @param first The first element to consider in theArray.
* @param last The last element to consider in theArray.
* @return the number of comparisons
*/
template<class ItemType>
int quicksort(ItemType theArray[], int first, int last, int& counter) {
if (last - first + 1 < MIN_SIZE) {
counter += insertionSort(theArray, first, last);
}
else {
// Create the partition: S1 | Pivot | S2
int pivotIndex = partition(theArray, first, last, counter);
// Sort subarrays S1 and S2
quicksort(theArray, first, pivotIndex - 1, counter);
quicksort(theArray, pivotIndex + 1, last, counter);
}
return counter;
}
#endif
字符串
这是用于快速排序的代码。
std::cout << "Quicksort ";
std::cout << " " << std::left << quicksort(makeRandomArray(10, seed), 0, 10-1, comparisons);
comparisons = 0;
std::cout << " " << quicksort(makeRandomArray(100, seed), 0, 100-1, comparisons);
comparisons = 0;
std::cout << " " << quicksort(makeRandomArray(1000, seed), 0, 1000-1, comparisons);
comparisons = 0;
std::cout << " " << quicksort(makeRandomArray(10000, seed), 0, 10000-1, comparisons) << std::endl;
型
这是main.cpp文件中用于打印快速排序比较结果的代码。我知道这不是很好也不是很有效,但现在,它是有效的。我只想让我的快速排序计数准确。编辑:数组生成器的代码:
int* makeRandomArray(int n, int seed) {
srand(seed);
int * a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = rand() % 1000;
}
return a;
型
}
1条答案
按热度按时间mccptt671#
如果是我,我可能会创建一个小型类模板,重载
operator<
来计算它被调用的频率。字符串
我没有详细检查您的代码--您可能需要支持更多的操作,这些操作给予对底层值的访问,但这只是一般的想法。
有了这个,而不是排序一个
std::vector<int>
,你会排序一个std::vector<comparison_counter<int>>
。当你完成排序,comparison_counter::comparisons
将保存一个计数多少比较完成。有几点需要注意:
reset_counter
。