为什么这个类型检查失败?(scala.compiletime.ops.int)

jw5wzhpr  于 2024-01-08  发布在  Scala
关注(0)|答案(1)|浏览(281)

我正在做一个自己的固定大小的向量类,这段代码被拒绝了

import scala.compiletime.ops.int._

enum Tensor1[Dim <: Int, +T]:
  case Empty extends Tensor1[0, Nothing]
  case Cons[N <: Int, A](head: A, tail: Tensor1[N, A]) extends Tensor1[S[N], A]

  def ::[SuperT >: T](operand: SuperT): Tensor1[Dim + 1, SuperT] = Cons(operand, this)

字符串
带着这个信息:

[error] Tree: Tensor1.Cons.apply[Dim, SuperT](operand, this)
[error] I tried to show that
[error]   Tensor1.Cons[Dim, SuperT]
[error] conforms to
[error]   Tensor1[Dim + (1 : Int), SuperT]
[error] but the comparison trace ended with `false`:


但是当我在::的定义中将Dim + 1更改为S[Dim]时,它可以工作。

def ::[SuperT >: T](operand: SuperT): Tensor1[S[Dim], SuperT] = Cons(operand, this)


为什么会这样?S+ 1不同吗?

v7pvogib

v7pvogib1#

是的,S+ 1确实不同。

type S[N <: Int] <: Int

type +[X <: Int, Y <: Int] <: Int

字符串
它们在编译器内部实现。
Scala不是一个真正的定理证明器。它允许你证明定理,但不会为你证明定理。Scala知道10 + 11 + 10S[10],但不知道n + 11 + nS[n]

summon[10 + 1 =:= S[10]] //compiles
summon[1 + 10 =:= S[10]] //compiles

type n <: Int
//summon[n + 1 =:= S[n]] // doesn't compile
//summon[1 + n =:= S[n]] // doesn't compile


即使S+是感应实现的,

sealed trait Nat
class S[N <: Nat] extends Nat
object _0 extends Nat
type _0 = _0.type
type _1 = S[_0]

type +[N <: Nat, M <: Nat] = N match
  case _0 => M
  case S[n] => S[n + M]


很明显_1 + n =:= S[n],但不明显n + _1 =:= S[n](这是一个有待证明的定理)

type n <: Nat
summon[_1 + n =:= S[n]] // compiles
//summon[n + _1 =:= S[n]] // doesn't compile


如果你根据第二个参数归纳地定义加法,

type +[N <: Nat, M <: Nat] = M match
  case _0 => N
  case S[m] => S[N + m]


则反之亦然n + _1 =:= S[n]变得明显,但_1 + n =:= S[n]必须被证明

//summon[_1 + n =:= S[n]] // doesn't compile
summon[n + _1 =:= S[n]] // compiles


How to define induction on natural numbers in Scala 2.13?

相关问题