(13)Dubbo集群容错机制及源码分析

x33g5p2x  于2021-12-21 转载在 其他  
字(15.2k)|赞(0)|评价(0)|浏览(480)

本节介绍

本节将会对Dubbo的集群容错机制有哪些,都有什么样的特点,分别是怎么使用的,以及部分源码进行分析。

1.简介

为了避免单点故障,现在的应用通常至少会部署在两台服务器上。对于一些负载比较高的服务,会部署更多的服务器。这样,在同一环境下的服务提供者数量会大于1。对于服务消费者来说,同一环境下出现了多个服务提供者。这时会出现一个问题,服务消费者需要决定选择哪个服务提供者进行调用。另外服务调用失败时的处理措施也是需要考虑的,是重试呢,还是抛出异常,亦或是只打印异常等。为了处理这些问题,Dubbo 定义了集群接口 Cluster 以及 Cluster Invoker。集群 Cluster 用途是将多个服务提供者合并为一个 Cluster Invoker,并将这个 Invoker 暴露给服务消费者。这样一来,服务消费者只需通过这个 Invoker 进行远程调用即可,至于具体调用哪个服务提供者,以及调用失败后如何处理等问题,现在都交给集群模块去处理。集群模块是服务提供者和服务消费者的中间层,为服务消费者屏蔽了服务提供者的情况,这样服务消费者就可以专心处理远程调用相关事宜。比如发请求,接受服务提供者返回的数据等。这就是集群的作用。

Dubbo 提供了多种集群实现,包含但不限于 Failover Cluster、Failfast Cluster 和 Failsafe Cluster 等。每种集群实现类的用途不同,接下来会一一进行分析。

2. 集群容错

在对集群相关代码进行分析之前,这里有必要先来介绍一下集群容错的所有组件。包含 Cluster、Cluster Invoker、Directory、Router 和 LoadBalance 等。

集群工作过程可分为两个阶段,第一个阶段是在服务消费者初始化期间,集群 Cluster 实现类为服务消费者创建 Cluster Invoker 实例,即上图中的 merge 操作。第二个阶段是在服务消费者进行远程调用时。以 FailoverClusterInvoker 为例,该类型 Cluster Invoker 首先会调用 Directory 的 list 方法列举 Invoker 列表(可将 Invoker 简单理解为服务提供者)。Directory 的用途是保存 Invoker,可简单类比为 List<Invoker>。其实现类 RegistryDirectory 是一个动态服务目录,可感知注册中心配置的变化,它所持有的 Inovker 列表会随着注册中心内容的变化而变化。每次变化后,RegistryDirectory 会动态增删 Inovker,并调用 Router 的 route 方法进行路由,过滤掉不符合路由规则的 Invoker。当 FailoverClusterInvoker 拿到 Directory 返回的 Invoker 列表后,它会通过 LoadBalance 从 Invoker 列表中选择一个 Inovker。最后 FailoverClusterInvoker 会将参数传给 LoadBalance 选择出的 Invoker 实例的 invoker 方法,进行真正的远程调用。

以上就是集群工作的整个流程,这里并没介绍集群是如何容错的。Dubbo 主要提供了这样几种容错方式:

  • Failover Cluster - 失败自动切换
  • Failfast Cluster - 快速失败
  • Failsafe Cluster - 失败安全
  • Failback Cluster - 失败自动恢复
  • Forking Cluster - 并行调用多个服务提供者
  • Broadcast - 广播调用
策略名称优点缺点主要应用场景
Failover对调用者屏蔽调用失败的信息增加RT,额外资源开销,资源浪费对调用rt不敏感的场景
Failfast业务快速感知失败状态进行自主决策产生较多报错的信息非幂等性操作,需要快速感知失败的场景
Failsafe即使失败了也不会影响核心流程对于失败的信息不敏感,需要额外的监控旁路系统,失败不影响核心流程正确性的场景
Failback失败自动异步重试重试任务可能堆积对于实时性要求不高,且不需要返回值的一些异步操作
Forking并行发起多个调用,降低失败概率消耗额外的机器资源,需要确保操作幂等性资源充足,且对于失败的容忍度较低,实时性要求高的场景
Broadcast支持对所有的服务提供者进行操作资源消耗很大通知所有提供者更新缓存或日志等本地资源信息

下面开始分析源码。

3.源码分析

集群容错机制相关源码位置如下

3.1 Cluster 实现类分析

我们在上一章看到了两个概念,分别是集群接口 Cluster 和 Cluster Invoker,这两者是不同的。Cluster 是接口,而 Cluster Invoker 是一种 Invoker。服务提供者的选择逻辑,以及远程调用失败后的的处理逻辑均是封装在 Cluster Invoker 中。那么 Cluster 接口和相关实现类有什么用呢?用途比较简单,仅用于生成 Cluster Invoker。下面我们来看一下源码。

public class FailoverCluster implements Cluster {

    public final static String NAME = "failover";

    @Override
    public <T> Invoker<T> join(Directory<T> directory) throws RpcException {
        // 创建并返回 FailoverClusterInvoker 对象
        return new FailoverClusterInvoker<T>(directory);
    }
}

如上,FailoverCluster 总共就包含这几行代码,用于创建 FailoverClusterInvoker 对象,很简单。下面再看一个。

public class FailbackCluster implements Cluster {

    public final static String NAME = "failback";

    @Override
    public <T> Invoker<T> join(Directory<T> directory) throws RpcException {
        // 创建并返回 FailbackClusterInvoker 对象
        return new FailbackClusterInvoker<T>(directory);
    }

}

如上,FailbackCluster 的逻辑也是很简单,无需解释了。所以接下来,我们把重点放在各种 Cluster Invoker 上

3.2 Cluster Invoker 分析

我们首先从各种 Cluster Invoker 的父类 AbstractClusterInvoker 源码开始说起。前面说过,集群工作过程可分为两个阶段,第一个阶段是在服务消费者初始化期间。第二个阶段是在服务消费者进行远程调用时,此时 AbstractClusterInvoker 的 invoke 方法会被调用。列举 Invoker,负载均衡等操作均会在此阶段被执行。因此下面先来看一下 invoke 方法的逻辑。

public Result invoke(final Invocation invocation) throws RpcException {
    checkWhetherDestroyed();
    LoadBalance loadbalance = null;

    // 绑定 attachments 到 invocation 中.
    Map<String, String> contextAttachments = RpcContext.getContext().getAttachments();
    if (contextAttachments != null && contextAttachments.size() != 0) {
        ((RpcInvocation) invocation).addAttachments(contextAttachments);
    }

    // 列举 Invoker
    List<Invoker<T>> invokers = list(invocation);
    if (invokers != null && !invokers.isEmpty()) {
        // 加载 LoadBalance
        loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(invokers.get(0).getUrl()
                .getMethodParameter(RpcUtils.getMethodName(invocation), Constants.LOADBALANCE_KEY, Constants.DEFAULT_LOADBALANCE));
    }
    RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);
    
    // 调用 doInvoke 进行后续操作
    return doInvoke(invocation, invokers, loadbalance);
}

// 抽象方法,由子类实现
protected abstract Result doInvoke(Invocation invocation, List<Invoker<T>> invokers,
                                       LoadBalance loadbalance) throws RpcException;

AbstractClusterInvoker 的 invoke 方法主要用于列举 Invoker,以及加载 LoadBalance。最后再调用模板方法 doInvoke 进行后续操作。下面我们来看一下 Invoker 列举方法 list(Invocation) 的逻辑,如下:

protected List<Invoker<T>> list(Invocation invocation) throws RpcException {
    // 调用 Directory 的 list 方法列举 Invoker
    List<Invoker<T>> invokers = directory.list(invocation);
    return invokers;
}

如上,AbstractClusterInvoker 中的 list 方法做的事情很简单,只是简单的调用了 Directory 的 list 方法,没有其他更多的逻辑了。接下来,我们把目光转移到 AbstractClusterInvoker 的各种实现类上,来看一下这些实现类是如何实现 doInvoke 方法逻辑的。

3.2.1 FailoverClusterInvoker

说明:

Failover是高可用系统中的一个常用概念,服务器通常拥有主备两套机器配置,如果主服务器出现故障,则自动切换到备服务器中,从而保证了整体的高可用性。

Dubbo也借鉴了这个思想,并且把它作为Dubbo默认的容错策略。当调用出现失败的时候,根据配置的重试次数,会自动从其他可用地址中重新选择一个可用的地址进行调用,直到调用成功,或者是达到重试的上限位置。

Dubbo里默认配置的重试次数是2,也就是说,算上第一次调用,最多会调用3次。

其配置方法,容错策略既可以在服务提供方配置,也可以服务调用方进行配置。而重试次数的配置则更为灵活,既可以在服务级别进行配置,也可以在方法级别进行配置。具体优先顺序为:

服务调用方方法级配置 > 服务调用方服务级配置 > 服务提供方方法级配置 > 服务提供方服务级配置

以XML方式为例,具体配置方法如下:

服务提供方,服务级配置

<dubbo:service interface="org.apache.dubbo.demo.DemoService" ref="demoService" cluster="failover" retries="2" />

服务提供方,方法级配置

<dubbo:service interface="org.apache.dubbo.demo.DemoService" ref="demoService"cluster="failover">
     <dubbo:method name="sayHello" retries="2" />
 </dubbo:reference>

服务调用方,服务级配置

<dubbo:reference id="demoService" interface="org.apache.dubbo.demo.DemoService" cluster="failover" retries="1"/>

服务调用方,方法级配置:

<dubbo:reference id="demoService" interface="org.apache.dubbo.demo.DemoService" cluster="failover">
     <dubbo:method name="sayHello" retries="3" />
 </dubbo:reference>

Failover可以自动对失败进行重试,对调用者屏蔽了失败的细节,但是Failover策略也会带来一些副作用:

  • 重试会额外增加一下开销,例如增加资源的使用,在高负载系统下,额外的重试可能让系统雪上加霜。
  • 重试会增加调用的响应时间。
  • 某些情况下,重试甚至会造成资源的浪费。考虑一个调用场景,A->B->C,如果A处设置了超时100ms,再B->C的第一次调用完成时已经超过了100ms,但很不幸B->C失败,这时候会进行重试,但其实这时候重试已经没有意义,因此在A看来这次调用已经超时,A可能已经开始执行其他逻辑。

源码分析:

FailoverClusterInvoker 在调用失败时,会自动切换 Invoker 进行重试。默认确配置下,Dubbo 会使用这个类作为缺省 Cluster Invoker。下面来看一下该类的逻辑。

public class FailoverClusterInvoker<T> extends AbstractClusterInvoker<T> {

    // 省略部分代码

    @Override
    public Result doInvoke(Invocation invocation, final List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
        List<Invoker<T>> copyinvokers = invokers;
        checkInvokers(copyinvokers, invocation);
        // 获取重试次数
        int len = getUrl().getMethodParameter(invocation.getMethodName(), Constants.RETRIES_KEY, Constants.DEFAULT_RETRIES) + 1;
        if (len <= 0) {
            len = 1;
        }
        RpcException le = null;
        List<Invoker<T>> invoked = new ArrayList<Invoker<T>>(copyinvokers.size());
        Set<String> providers = new HashSet<String>(len);
        // 循环调用,失败重试
        for (int i = 0; i < len; i++) {
            if (i > 0) {
                checkWhetherDestroyed();
                // 在进行重试前重新列举 Invoker,这样做的好处是,如果某个服务挂了,
                // 通过调用 list 可得到最新可用的 Invoker 列表
                copyinvokers = list(invocation);
                // 对 copyinvokers 进行判空检查
                checkInvokers(copyinvokers, invocation);
            }

            // 通过负载均衡选择 Invoker
            Invoker<T> invoker = select(loadbalance, invocation, copyinvokers, invoked);
            // 添加到 invoker 到 invoked 列表中
            invoked.add(invoker);
            RpcContext.getContext().setInvokers((List) invoked);
            try {
                // 调用目标 Invoker 的 invoke 方法
                Result result = invoker.invoke(invocation);
                return result;
            } catch (RpcException e) {
                if (e.isBiz()) {
                    throw e;
                }
                le = e;
            } catch (Throwable e) {
                le = new RpcException(e.getMessage(), e);
            } finally {
                providers.add(invoker.getUrl().getAddress());
            }
        }
        
        // 若重试失败,则抛出异常
        throw new RpcException(..., "Failed to invoke the method ...");
    }
}

如上,FailoverClusterInvoker 的 doInvoke 方法首先是获取重试次数,然后根据重试次数进行循环调用,失败后进行重试。在 for 循环内,首先是通过负载均衡组件选择一个 Invoker,然后再通过这个 Invoker 的 invoke 方法进行远程调用。如果失败了,记录下异常,并进行重试。重试时会再次调用父类的 list 方法列举 Invoker。整个流程大致如此,不是很难理解。下面我们看一下 select 方法的逻辑。

protected Invoker<T> select(LoadBalance loadbalance, Invocation invocation, List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException {
    if (invokers == null || invokers.isEmpty())
        return null;
    // 获取调用方法名
    String methodName = invocation == null ? "" : invocation.getMethodName();

    // 获取 sticky 配置,sticky 表示粘滞连接。所谓粘滞连接是指让服务消费者尽可能的
    // 调用同一个服务提供者,除非该提供者挂了再进行切换
    boolean sticky = invokers.get(0).getUrl().getMethodParameter(methodName, Constants.CLUSTER_STICKY_KEY, Constants.DEFAULT_CLUSTER_STICKY);
    {
        if (stickyInvoker != null && !invokers.contains(stickyInvoker)) {
            stickyInvoker = null;
        }
        
        if (sticky && stickyInvoker != null && (selected == null || !selected.contains(stickyInvoker))) {
            if (availablecheck && stickyInvoker.isAvailable()) {
                return stickyInvoker;
            }
        }
    }
    
    // 如果线程走到当前代码处,说明前面的 stickyInvoker 为空,或者不可用。
    // 此时继续调用 doSelect 选择 Invoker
    Invoker<T> invoker = doSelect(loadbalance, invocation, invokers, selected);

    // 如果 sticky 为 true,则将负载均衡组件选出的 Invoker 赋值给 stickyInvoker
    if (sticky) {
        stickyInvoker = invoker;
    }
    return invoker;
}
<dubbo:reference id="xxxService" interface="com.xxx.XxxService" sticky="true" />

如上,select 方法的主要逻辑集中在了对粘滞连接特性的支持上。首先是获取 sticky 配置,然后再检测 invokers 列表中是否包含 stickyInvoker,如果不包含,则认为该 stickyInvoker 不可用,此时将其置空。这里的 invokers 列表可以看做是存活着的服务提供者列表,如果这个列表不包含 stickyInvoker,那自然而然的认为 stickyInvoker 挂了,所以置空。如果 stickyInvoker 存在于 invokers 列表中,此时要进行下一项检测 — 检测 selected 中是否包含 stickyInvoker。如果包含的话,说明 stickyInvoker 在此之前没有成功提供服务(但其仍然处于存活状态)。此时我们认为这个服务不可靠,不应该在重试期间内再次被调用,因此这个时候不会返回该 stickyInvoker。如果 selected 不包含 stickyInvoker,此时还需要进行可用性检测,比如检测服务提供者网络连通性等。当可用性检测通过,才可返回 stickyInvoker,否则调用 doSelect 方法选择 Invoker。如果 sticky 为 true,此时会将 doSelect 方法选出的 Invoker 赋值给 stickyInvoker。

以上就是 select 方法的逻辑,关于 select 方法先分析这么多,继续向下分析。

private Invoker<T> doSelect(LoadBalance loadbalance, Invocation invocation, List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException {
    if (invokers == null || invokers.isEmpty())
        return null;
    if (invokers.size() == 1)
        return invokers.get(0);
    if (loadbalance == null) {
        // 如果 loadbalance 为空,这里通过 SPI 加载 Loadbalance,默认为 RandomLoadBalance
        loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(Constants.DEFAULT_LOADBALANCE);
    }
    
    // 通过负载均衡组件选择 Invoker
    Invoker<T> invoker = loadbalance.select(invokers, getUrl(), invocation);

	// 如果 selected 包含负载均衡选择出的 Invoker,或者该 Invoker 无法经过可用性检查,此时进行重选
    if ((selected != null && selected.contains(invoker))
            || (!invoker.isAvailable() && getUrl() != null && availablecheck)) {
        try {
            // 进行重选
            Invoker<T> rinvoker = reselect(loadbalance, invocation, invokers, selected, availablecheck);
            if (rinvoker != null) {
                // 如果 rinvoker 不为空,则将其赋值给 invoker
                invoker = rinvoker;
            } else {
                // rinvoker 为空,定位 invoker 在 invokers 中的位置
                int index = invokers.indexOf(invoker);
                try {
                    // 获取 index + 1 位置处的 Invoker,以下代码等价于:
                    //     invoker = invokers.get((index + 1) % invokers.size());
                    invoker = index < invokers.size() - 1 ? invokers.get(index + 1) : invokers.get(0);
                } catch (Exception e) {
                    logger.warn("... may because invokers list dynamic change, ignore.");
                }
            }
        } catch (Throwable t) {
            logger.error("cluster reselect fail reason is : ...");
        }
    }
    return invoker;
}

doSelect 主要做了两件事,第一是通过负载均衡组件选择 Invoker。第二是,如果选出来的 Invoker 不稳定,或不可用,此时需要调用 reselect 方法进行重选。若 reselect 选出来的 Invoker 为空,此时定位 invoker 在 invokers 列表中的位置 index,然后获取 index + 1 处的 invoker,这也可以看做是重选逻辑的一部分。下面我们来看一下 reselect 方法的逻辑。

private Invoker<T> reselect(LoadBalance loadbalance, Invocation invocation,
    List<Invoker<T>> invokers, List<Invoker<T>> selected, boolean availablecheck) throws RpcException {

    List<Invoker<T>> reselectInvokers = new ArrayList<Invoker<T>>(invokers.size() > 1 ? (invokers.size() - 1) : invokers.size());

    // 下面的 if-else 分支逻辑有些冗余,pull request #2826 对这段代码进行了简化,可以参考一下
    // 根据 availablecheck 进行不同的处理
    if (availablecheck) {
        // 遍历 invokers 列表
        for (Invoker<T> invoker : invokers) {
            // 检测可用性
            if (invoker.isAvailable()) {
                // 如果 selected 列表不包含当前 invoker,则将其添加到 reselectInvokers 中
                if (selected == null || !selected.contains(invoker)) {
                    reselectInvokers.add(invoker);
                }
            }
        }
        
        // reselectInvokers 不为空,此时通过负载均衡组件进行选择
        if (!reselectInvokers.isEmpty()) {
            return loadbalance.select(reselectInvokers, getUrl(), invocation);
        }

    // 不检查 Invoker 可用性
    } else {
        for (Invoker<T> invoker : invokers) {
            // 如果 selected 列表不包含当前 invoker,则将其添加到 reselectInvokers 中
            if (selected == null || !selected.contains(invoker)) {
                reselectInvokers.add(invoker);
            }
        }
        if (!reselectInvokers.isEmpty()) {
            // 通过负载均衡组件进行选择
            return loadbalance.select(reselectInvokers, getUrl(), invocation);
        }
    }

    {
        // 若线程走到此处,说明 reselectInvokers 集合为空,此时不会调用负载均衡组件进行筛选。
        // 这里从 selected 列表中查找可用的 Invoker,并将其添加到 reselectInvokers 集合中
        if (selected != null) {
            for (Invoker<T> invoker : selected) {
                if ((invoker.isAvailable())
                        && !reselectInvokers.contains(invoker)) {
                    reselectInvokers.add(invoker);
                }
            }
        }
        if (!reselectInvokers.isEmpty()) {
            // 再次进行选择,并返回选择结果
            return loadbalance.select(reselectInvokers, getUrl(), invocation);
        }
    }
    return null;
}

reselect 方法总结下来其实只做了两件事情,第一是查找可用的 Invoker,并将其添加到 reselectInvokers 集合中。第二,如果 reselectInvokers 不为空,则通过负载均衡组件再次进行选择。其中第一件事情又可进行细分,一开始,reselect 从 invokers 列表中查找有效可用的 Invoker,若未能找到,此时再到 selected 列表中继续查找。关于 reselect 方法就先分析到这,继续分析其他的 Cluster Invoker。

3.2.2 FailfastClusterInvoker

说明:

某些业务场景中,某些操作可能是非幂等的,如果重复发起调用,可能会导致出现脏数据等。例如调用某个服务,其中包含一个数据库的写操作,如果写操作完成,但是在发送结果给调用方的过程中出错了,那么在调用发看来这次调用失败了,但其实数据写入已经完成。这种情况下,重试可能并不是一个好策略,这时候就需要使用到Failfast策略,调用失败立即报错。让调用方来决定下一步的操作并保证业务的幂等性。

具体配置方法:

服务提供方,服务级配置

<dubbo:service interface="org.apache.dubbo.demo.DemoService" ref="demoService" cluster="failfast" />

服务调用方,服务级配置

<dubbo:reference id="demoService" interface="org.apache.dubbo.demo.DemoService" cluster="failfast"/>

源码分析:

FailfastClusterInvoker 只会进行一次调用,失败后立即抛出异常。适用于幂等操作,比如新增记录。源码如下:

public class FailfastClusterInvoker<T> extends AbstractClusterInvoker<T> {

    @Override
    public Result doInvoke(Invocation invocation, List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
        checkInvokers(invokers, invocation);
        // 选择 Invoker
        Invoker<T> invoker = select(loadbalance, invocation, invokers, null);
        try {
            // 调用 Invoker
            return invoker.invoke(invocation);
        } catch (Throwable e) {
            if (e instanceof RpcException && ((RpcException) e).isBiz()) {
                // 抛出异常
                throw (RpcException) e;
            }
            // 抛出异常
            throw new RpcException(..., "Failfast invoke providers ...");
        }
    }
}

如上,首先是通过 select 方法选择 Invoker,然后进行远程调用。如果调用失败,则立即抛出异常。

3.2.3 FailbackClusterInvoker

说明:

Failback通常和Failover两个概念联系在一起。在高可用系统中,当主机发生故障,通过Failover进行主备切换后,待故障恢复后,系统应该具备自动恢复原始配置的能力。

Dubbo中的Failback策略中,如果调用失败,则此次失败相当于Failsafe,将返回一个空结果。而与Failsafe不同的是,Failback策略会将这次调用加入内存中的失败列表中,对于这个列表中的失败调用,会在另一个线程中进行异步重试,重试如果再发生失败,则会忽略,即使重试调用成功,原来的调用方也感知不到了。因此它通常适合于,对于实时性要求不高,且不需要返回值的一些异步操作。

具体配置方法:与上面类似,不再赘述,cluster="failback"

源码分析:

FailbackClusterInvoker 会在调用失败后,返回一个空结果给服务提供者。并通过定时任务对失败的调用进行重传,适合执行消息通知等操作。

3.2.4 FailsafeClusterInvoker

说明:

失败安全策略的核心是即使失败了也不会影响整个调用流程。通常情况下用于旁路系统或流程中,它的失败不影响核心业务的正确性。在实现上,当出现调用失败时,会忽略此错误,并记录一条日志,同时返回一个空结果,在上游看来调用是成功的。

应用场景,可以用于写入审计日志等操作。

具体配置方法:与上面类似,不再赘述,cluster="failsafe"

源码分析:

FailsafeClusterInvoker 是一种失败安全的 Cluster Invoker。所谓的失败安全是指,当调用过程中出现异常时,FailsafeClusterInvoker 仅会打印异常,而不会抛出异常。适用于写入审计日志等操作。

3.2.5 ForkingClusterInvoker

说明:

并行调用多个服务器,只要一个成功即返回。通常用于实时性要求较高的读操作,但需要浪费更多服务资源。可通过 forks="2" 来设置最大并行数。

应用场景,资源充足,且对于失败的容忍度较低,实时性要求高的场景

具体配置方法:与上面类似,不再赘述,cluster="forking"

源码分析:

ForkingClusterInvoker 会在运行时通过线程池创建多个线程,并发调用多个服务提供者。只要有一个服务提供者成功返回了结果,doInvoke 方法就会立即结束运行。ForkingClusterInvoker 的应用场景是在一些对实时性要求比较高读操作(注意是读操作,并行写操作可能不安全)下使用,但这将会耗费更多的资源。

3.2.6 BroadcastClusterInvoker

说明:

在某些场景下,可能需要对服务的所有提供者进行操作,此时可以使用广播调用策略。此策略会逐个调用所有提供者,只要任意有一个提供者出错,则认为此次调用出错。通常用于通知所有提供者更新缓存或日志等本地资源信息。

应用场景,通知所有提供者更新缓存或日志等本地资源信息

具体配置方法:与上面类似,不再赘述,cluster="broadcast"

源码分析:

BroadcastClusterInvoker 会逐个调用每个服务提供者,如果其中一台报错,在循环调用结束后,BroadcastClusterInvoker 会抛出异常。该类通常用于通知所有提供者更新缓存或日志等本地资源信息。

4.总结

本篇文章详细分析了集群容错的几种实现方式。集群容错对于 Dubbo 框架来说,是很重要的逻辑。集群模块处于服务提供者和消费者之间,对于服务消费者来说,集群可向其屏蔽服务提供者集群的情况,使其能够专心进行远程调用。总的来说,对于 Dubbo 而言,集群容错相关逻辑是非常重要的。想要对 Dubbo 有比较深的理解,集群容错是必须要掌握的。

相关文章